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Variational Calculation of the Hydrogen Molecular Cation (H; ) using Maple

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
(Dated: February 28, 2007)

I. SYNOPSIS

It is of interest to carry out a full calculation of the
H; quantum mechanical energy as a function of the in-
ternuclear distance so that one understands that the 2-
electron problem’s difficulties are, at least partially, due
to the electron-electron repulsion.

II. INTRODUCTION
Elementary texts show the ground state wave function
of H to be
lo ~1s4 + 1sp

where 1s; means a 1s orbital located on nucleus i.

P(x.y,2)<=>pQ J1.¢)

A@ (0,0,R12)

FIG. 1: The Elliptical Coordinate System for Diatomic
Molecules. The p coordinate is not depicted.

Next, the two wave functions in functional[l] rather
than in “symbolic” coordinates:

Ya=e M =150 =P = 1sp

Typeset by REVTEX

where

ra=+22+y%+ (2 — R/2)>

and

rp =22+ 3%+ (z + R/2)?

(R = internuclear distance, with nuclei at
(0,0,£R/2)). Finally, we re-write the wave function in
elliptical coordinates: where

rA+TB

A=
R

and
TA—TB
R
giving (in Maple format NOTE, the following is

WRONG. It is being left in for use in a class exercise
in finding and eliminating errors in coding):

#
H

assume (k>0,R>0) ;
psi_A := exp(~kx(R/2)*(lambda-mu)) ;
psi_B := exp(-k*(R/2)*(lambda+mu)) ;

#

psi_A = e(=1/2k7 BT (A=)

psi B = (~1/28 B ()

The tildes are a result of the “assume(k > 0,R > 0)”
statement, i.e., the assumption to be used that these two
“variables” are to regarded as positive definite. They are
necessary so that future integrations will “work”.

III. THE OVERLAP INTEGRALS

2
SAA :/ wAdT
all space

where, in elliptical coordinates,
RS
dr = §d¢ (A% = p?) dAdp

The term (t1) corresponds to the S(AA) integrand in el-
liptical coordinates.



#
k.

tl = (psi_A**2)*2*Pix
((R*%3)/8)*(lambda**2-mu**2) :

"

2*7 is the result of d¢ integration, and
((R**3)/8)(A# %2 — puxx2) dAdp is the rest of the volume
element which, along with d¢ corresponds to dx dy dz.

A. Integration of Mono-Nuclear Overlap (Sa4 and
SBB)

#
k.

t2 := expand(int(tl,mu=+1..-1)):

#
b

This line (creating t2) corresponds to integrating over
from +1 to -1 (as we know this is the domain), and then
expanding the result,

#

SAA := int(t2,lambda=1..infinity);

+

we finally carry out the second (\) integral (arriving at
the overlap integral Sa4).
SAA = %

Just as a check, we integrate over the B orbital, and
obtain the same normalization constant.

#
H

t11 := (psi_B**2)*2%Pix((R**3)/8)*
(lambda**2-mu**2) :

t21 := expand(int(tll,mu=+1..-1)):
t21 := collect(t21,exp(k*R*lambda)):
SBB := int(t21,lambda=1..infinity);

#
+

and here is the output, showing that Sqa = Spp:

™

Notice that neither of these integrals is a function of R.
B. Setting Up the A-B Overlap Integral

Now, we attempt the overlap integral itself. Notice the
product of wave functions.

wAB::(/‘ Yaypdr
all space

t3 := 2#Pi*psi_A*psi_B*((R*x3)/8)x*
(lambda**2-mu**2) :

This is the famous S4p integral.

+*

t4 := expand(int(t3,mu=+1..-1)):

collect (t4,exp(k*R*xlambda)) :

SAB := expand(int(t4,lambda=1..infinity)):
SAB := collect(SAB,exp(k*R));

t
KN
n

=+

17R? =nR " s
_3 kg T E?
SAB = )

Here, we notice that the resultant overlap is a function
of R.

IV. ENERGY OPERATORS

Here we introduce the Lapla-
cian in elliptical coordinates. (See
http://digitalcommons.uconn.edu/chem_educ/5)

o4 2(02-1)&)
v _R2(>\2—u2){< T >+

Nop? 9
0 ((ALU(Hﬂ) a¢)
ou oo}

First, we form V2 :

#
+

#start HAA section:

t5 := 4/((R**2)*(lambda**2-mu**2)) *

(diff ((lambda**2-1)*diff (psi_A,lambda) ,lambda)+
diff ((1-mu**2)*diff (psi_A,mu) ,mu)):

#
kL

After operating with the Laplacian, we attempt the inte-
gration by, first, left multiplying with the A-orbital (later
we will left multiply by the B-orbital), and then integrat-
ing, i.e.,

/ YAV adr
all space

H

t6 :=psi_Ax 2xPi*((-hbar**2)/(2*m))
*t5% (R**3/8) * (Lambda**2-mu**2) :

KEAA := int(t6,mu=+1..-1):
KEAA := int(KEAA,lambda=1..infinity):
KEAA := collect(KEAA,exp(k*R));

#
#

1 7 hbar?

KEAA i= = ————
2 k"m



A. Part of the Exchange Integral

This is now the part where we operate with the Lapla-
cian on the B-orbital, but left multiply by the A-orbital.

KEan= [ 0aVPundr
all space

First, we evaluate

Vg

#
#

#HAB section

t5B := 4/((R¥*2)*(lambda**2-mu**2))x*

(diff ((lambda**2-1)*diff (psi_B,lambda) ,lambda)+
diff ((1-mu**2)*diff (psi_B,mu) ,mu)):

w

and then left multiplying by ¢4 we obtain

H#
+

t61 :=psi_Ax 2xPix*((-hbar**2)/(2*m))*
t5B* (R**3/8) * (Lambda**2-mu**2) :

L

t61 is, along with atomic constants, t5B left multiplied
by psi_A.

#

KEAB := int(t61,mu=+1..-1):

KEAB := collect(KEAB,exp(k+*R)):

KEAB := int(KEAB,lambda=1..infinity):
KEAB := collect(KEAB,exp(k+*R));

"

The final kinetic energy term KFE4p,

KEAB := —%e(—’“”m

mhbar® (=3+ k2 R? -3k R")
k™m

B. The Potential Energy Operator

We need to integrate

ZA€2
/ Py * *ap;dr
all space

TA
and
ZB 62

/ V; *
all space B

for all i and j, dividing by ra = (R/2) * (A — p) will
give one kind of cancellation, while dividing by rg =
(R/2) # (A + p) will give the other kind of cancellation.

* ?ﬁde

(A2 — u?) = (A +p) * (A — p), so when dividing by r4 =
(R/2) * (A — p) one loses one term of this product i.e.,

R% 2 2 2

(% — R
M:I(Mﬂt)
S (A £ )

while when dividing by the other one loses the other.

#
H

I1_a := -2%Pi*Z_Axesq*((R**2)/4)x*
exp (~k*R*lambda) * (lambda+mu) ;

#
L

I1_a is the Coulomb attraction term (1/r_B) concerning
nucleus A

#
+

I2_a := -2%Pi*Z_Bkesqk((R**2)/4)*
exp (-k*R*lambda) * (lambda-mu) ;

#

12_a is the same kind of term concerning nucleus B.

#
+

I1. b := int(I1_a,mu=+1..-1):

I2_b := int(I2_a,mu=+1..-1):

Ii_c := int(I1_b,lambda=1..infinity):
I2_c := int(I2_b,lambda=1..infinity):
H_AA := KEAA+I1_c+I2_c:

I13_a := -2%Pi*Z_A*esq* ((R**2)/4)*

exp (~k*R*lambda) * (lambda+mu) :

#

I3_ais the Coulomb attraction term (1/r_B) concerning
nucleus A

#
+

I4_a :=
-2*Pi*Z_Bxesq* ((R**2)/4)*
exp (-k*R*lambda) * (Lambda-mu) :

#

I4_a is the Coulomb attraction term (1/r_A) concerning
nucleus B.
I3_b := int(I3_a,mu=+1..-1):
I4_ b := int(I4_a,mu=+1..-1):
I3_c := int(I3_b,lambda=1..infinity):
I4_c := int(I4_b,lambda=1..infinity):

#
+

We now form the two states, bonding and anti bonding:

#
#

H_AB := KEAB + I3_c+I4_c:
Energy_one := (H_AB-H_AA)/(SAB-SAA):
Energy_two := (H_AB + H_AA)/(SAB+SAA):

#




Here we specialize to H, :

#
H

Energy_one := subs(Z
Energy_two :

=1,Energy_one) :
=1,Energy_two) :

1
0
=1
o
)]
~
N

"

Here we transform to atomic units:

#
k.

Energy_one :=
subs (esq=1,hbar=1,m=1,Energy_one):

Energy_two := subs(esq=1,hbar=1,m=1,Energy_two) ;

#
k.

(Note, please, that the following lines have been edited
to fit on the page properly.)

Energy_two(numerator) :=

1 kR +1 T
L (—kR) . 2p2 . o
6ke 71'(( 3+ kR 3kR) —4 ? >+2k
Denominator =
1 /7mR?> 7R
- falahd (—kR)
3 < k + k2 + k3) = k

H#

plot3d(\{Energy_one+1/R,Energy_two+1/R\}
,k=1.5..2.5
R=0.2..4,axes=BOXED);

H
-
H

H#

En := subs(R=0.5,Energy_two+1/0.5):
plot(En,k=0.0..2.0,1labels=[‘k‘, ‘Energy‘],
title=‘Variation of Exponential k¢);

H#
W

V. DISCUSSION OF FIGURES

We suggest (above) how to do the plotting of the re-
sults of these calculations, but, below, display plots which

J

restart;

with(plots):

assume (k>0,R>0) ;

psi_A := exp (-k*(R/2) *(lambda-mu) ) ;
p31 B := exp(-k*(R/2)*(lambda+mu)) ;
(R/2) *(lambda-mu) ;
(R/2)*(lambda+mu) ;
((R"3)/8)*(lambda~2-mu"2) ;

dtau 1=

VVVVVVVYV

+#

are not coded. For pedagogical purposes, one can only
stress that involvement with the code itself is the only
way to appreciate what is going on, and just reading this
or that commentary is only partially enlightening. Mas-
tery comes with effort.

The plots shown home in on two facts about these com-
putations. First, the electronic energy of the H; molec-
ular cation is a function of the internuclear distance, and
splitting diagrams which show 1s orbitals splitting into o
and o* are diagrams at a fixed R value, generally where
the energy of the bonding state is a minimum! But Fig-
ure 3 we can see clearly the splitting between the 1o and
the 10" in the vicinity of R =~ 2au.

Second, it is interesting to note how weak the minimum
is in the LCAO-MO approximation. In fact, Maple itself
could not find the minimum! Hence the approximate
value employed (0.78) for k.

Finally, we note that the entire exercise is wrong. The
limits as R — oo are positive, while they should be neg-
ative, since at that limit, we have an H atom and a pro-
ton, and the H atom’s electron is in the 1s state! Figure
3 clearly shows that at R > 5 the energies are asymptot-
ically positive!

Further, 4 gives no hint that there is an error here, i.e.,
the seduction of good looking graphs lowers our skepti-

cism concerning accuracy!

After more trouble than I care to discuss, the following
worked:

VI. HERE IS THE CORRECTED VERSION

L

tl :
t2 := expand(int(tl,mu=-1..1)):

t2 collect(t2, exp (k*R*lambda)) :
print (‘here is SAA® )

SAA := int (t2,la.mbda=1. .infinity);
psi_A := psi_A/sqrt(SAA) ;#normalize

VVVVVYVYV

(psi_A*x2)*2xPi* ((R**3)/8)* (lambda**2-mu**2) :



VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYV

Energy_one :=

>
>

t11l := (psi_B**2)*2*Pi* ((R**3)/8)*(lambda**2-mu**2) :
t21 := expand(int(tll,mu=-1..1)):
t21 := collect(t21,exp(k*R*lambda)):

print (‘here is SBB‘);
SBB := int(t21,lambda=1..infinity);
ps1 B := psi_B/sqrt(SBB);

expand (int (t3,mu=-1..1)):

:= collect(t4,exp(k*R*lambda)) :

SAB := expand(int(t4,lambda=1..infinity)):
SAB := collect(SAB,exp(k*R));

#start HAA section:

t5 := 4/((R**2)*(lambda*x*2-mu**2) ) *

(diff ((lambda**2-1)*diff (psi_A,lambda) ,lambda)+
diff ((1-mu**2)*diff (psi_A,mu) ,mu)):

t6 :=psi_Ax 2%Pix*((-hbar**2)/(2*m))*t5*dtau
-2*%Pi*Z_Axesq*(1/r_A)*psi_A*psi_Axdtau
-2*Pi*Z_Axesq*(1/r_B)*psi_A*psi_Axdtau:

HAA := int(t6,mu=-1..1):

HAA := int(HAA,lambda=1..infinity);

#HAB section

t5B := 4/ ((R**2)*(lambda**2-mu**2) ) *

(diff ((lambda**2-1)*diff (psi_B,lambda) ,lambda)+
diff ((1-mu**2)*diff (psi_B,mu) ,mu)):

t61 :=psi_A* 2%Pix((-hbar*x2)/(2+*m))*t5B*dtau
-2*%Pi*Z_Axesq*(1/r_A)*psi_B*psi_A*dtau
-2%PixZ_Axesq* (1/r_B)*psi_B*psi_Axdtau:

HAB := int(t61,mu=-1..1):

ct ot
)
0!

HAB := collect(HAB exp(k*R)) :
HAB := int(HAB,lambda=1..infinity):
HAB := collect(HAB,exp(k+*R));

Energy_one := (HAA-HAB)/(1-SAB):

Energy_two := (HAB + HAA)/(SAB+1):
#spec1a112e to homonuclear Z=1 case
Energy_one subs(Z_A=1,Z_B=1,Energy_one) ;

Energy_two := subs(Z_A=1,Z_B=1,Energy_two);
Energy_one := subs(esq=1,hbar=1,m=1,Energy_one);
Energy_two := subs(esq=1,hbar= 1 m—1 ,Energy_two) ;

=

1= 2*Pi*psi_A*psi_B* ((R*%*3)/8) * (lambda**2-mu**2) :

eCFE)p (=34 k?R2?-3k"R") 1nm

k- 2 k-

17TR~2+7TR~+l
3 k- k2 k3w
(k" R) L3

plot3d({Energy_one+1/R,Energy_two+1/R
},k=1.0..1.5,R=0.2..4,axes=B0OXED) ;



En5 := subs(R=1.0,Energy_two+1/R):
En6é := subs(R=1.2,Energy_two+1/R):
En7 := subs(R=1.4,Energy_two+1/R):
En8 := subs(R=1.6,Energy_two+1/R):
En9 := subs(R=1.8,Energy_two+1/R):
En10 := subs(R=2.0,Energy_two+1/R):
Enil := subs(R=2.2,Energy_two+1/R):
En12 := subs(R=2.4,Energy_two+1/R):
En13 := subs(R=2.6,Energy_two+1/R):
En14 := subs(R=2.8,Energy_two+1/R):
En15 := subs(R=3.0,Energy_two+1/R):

plot({EnS En6,En7,En8,En9,En10,En11,En12,En13,En14,En15
},k=0.0..2.0,labels=[‘k, ‘Energy‘] ,title=‘Variation of Exponential
k);

contourplot (Energy_two+1/R,R=0.8..3.
#minimize (Energy_two+1/R,R=0.8..3.5
TIME

#choose 1.2 (by eye);

plot ({subs(k=1.2,Energy_two+1/R),
subs (k=0.78,Energy_one+1/R)
},R=0.1..5.0,1labels=[‘R¢, ‘Energy‘],title=‘E(R) );
limitl := limit(subs(k=1.2,Energy_one+1/R),R=infinity);
limit2 := limit(subs(k=1.2,Energy_two+1/R),R=infinity);

5,k=0.8..2.0,contours = 80);
k=0.8..2.0,1location) ;#FAILED ON

>

VVVVVVVVVVVVVVVVVVYVVVVYV

Warning, the name changecoords has been redefined
k™ R™ (A—p) )
2

psi_A = el=

KR Qo
2

psi_B = e~
r A= LGSl
2
R™ (A4 p)
2
R (N — %)
8
here is SAA

SAA =

r_.B .=

dtau :=

kL~ 7.~3
( k™ R™ ()\ “))k"
e
.7A ==
pSi —

k™
here is SBB

SBB =
k3
(_k R~ r()\‘HA)) k,,
e 2
'7B :: .
psi =

k™
L
gk R*+k R +1
SAB := )

HAA := _%(2 Z Aesqm (e* BNV R k™ —2Z_Aesqgm — k™% hbar® R~ (e® 17))2
—2Z Aesqmk™ R™ +2 (e(’€~ Rk))z Z_Aesqm) /(R~ (e(’€~ R~))2 m)

1
HAB := 76k~(hbar2 k™ R™® —3hbar® k™ +12Z_Aesqgm — 3hbar® k"> R~
+12Z_Aesgmk™ R )e=F B /m



1 k™ (hbar® k™ R™> — 3hbar® k™ 4+ 12 esqm — 3 hbar® k™ R~ + 12 esqm k™ R™) e =% )

E _two 1= (—=
nergy_two := ( 5 -

1 < - I
- 5(2 esqm (eF EN2 R k™ —2esqm — k™2 hbar® R (e*" B2 — 2 esqm k™ R™
1
o o §k~2}z*2+k~R*+1
2T esgm) (R () [

12(e® BN2R k™ —2 - kR (e* B))2 2k~ R~ 42 (elk” £7))2
Energy_one := (—5 B (e

+ -k (kPR 2 -3k +12-3k 2R 412k R™) -+ 1) /(

(=20

1
g1¢~2113~2+1c~R*+1
1- e(k™ R7)

1 .
Energy_two := (_6 E (k™ R2?—3k"+12—3k> R +12k™ R™)e(-F £

120* B2 Rk —2— k2R (e B))2 —2k™ R™+2(elF £))2

2 R™ (e(F R7))2 )
1
SEP?R?+E R +1
3 +1

e(k”"R7)



WRONG FIGURES

VII.

FIG. 2: WRONG Energies of the ground and first excited states of the electron of the H; cation
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—0.4800000000

limit1 :

limit2 -
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J. Chem. Ed., 59, 288(1982
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FIG. 3: WRONG Energies of the ground and first excited states of the electron of the H;' cation assuming a fixed value of
k=0.78, plotted as a function or the internuclear distance R
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FIG. 5: Energy as a function of R and k (¢ and o*)
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FIG. 6: Energy as a function of k (o)
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FIG. 7: Energy contour
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FIG. 8: Energy as a function of R and k (o and o*)
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