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Abstract

A highly compact 4-parameter form for Helium’s approximate non-relativistic wave function is

proposed and shown to yield an energy expectation value within 0.0025 au of the “exact” value.

The wave function employs proper atomic number parameterized hydrogenic orbitals, a correlation

function whose form is
(
1 + 1

2r12e
−αr12

)
, coupled with a variationally determined expansion in r1,

r2, and r12.
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I. INTRODUCTION

The Schrödinger Equation for this two-electron problem has the form

−1

2

(
∇2

2 +∇2
2

)
ψ − 2

r1
ψ − 2

r2
ψ +

1

r1,2
ψ = Eψ

where the subscripts refer to electron 1 and 2 respectively.

Since the 1926, solutions to this equation have been predicated on using an exponential

decay factor dominated by a term

e−a(r1+r2)

where “a” was regarded as a variational parameter whose value was to be adjusted to make

the computed total energy a minimum.

The groundbreaking work in this area was conducted by Hylleraas [1–3]. The simplest

Hylleraas wave function

ψ = e−A(r1+r2)
(
1 + C0,0,1r

0
1r

0
2r

1
1,2

)
has coefficients (obtained variationally)

ψ = e−1.36(r1+r2) (1 + 0.365796r1,2)

and average energy (-2.89112 a.u.) but the local energy (Hopψ
ψ

) [4] associated with this

approximate function is singular both when r1 or r2 → 0 and also when r12 → 0.

Bartlett showed that expansions such as these could not possibly work [5] although

Coolidge and James [6] showed that the Bartlett finding does not sound the death knell

for Hylleraas type wave functions when employed in variational computations.

Over the years since Hyllerass’ original work, tremendous efforts have been made to im-

prove upon that work, using larger and larger expansions, adding more complicated terms,

etc., with the net result that the non-relativistic ground state energy of Helium’s electrons

is now known, to 35 significant figures to be [7, 8]E = −2.903 72 . . . a.u., a truly remarkable

result. This and similar results come from using increasingly more complicated wave func-

tions containing enormous numbers of terms in the wave function expansion, seeking greater

and greater accuracy of the resultant energy: 230 term [9], 246 term [10], 308 term [11], 616

term [12] and 1078 term [13] expansions have all been reported. A recent is from Korobov

[14] who reports a result to 25 significant digits using 5200 functions while Goldman recent

work [15] employed 8066 functions (Schwartz [7, 8] used 10257 terms). Computations based
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on expansions including logarithmic terms include those of Frankowski and Pekeris [10, 16]

up to the latest due to Forrey [17].

An alternative approach has attempted to find the “most compact” forms possible [18],

at the expense of good energy accuracy.

Finally, there are two other avenues of approach to this problem which have contributed

to our understanding. First, it is known [19–21] that the exact wave function’s expansion

has the analytic form

ψ = 1− Z(r1 + r2) +
1

2
r12 −

(
2(π − 2)

6π

)
r1r2 cos θ`n(r2

1 + r2
2) + · · ·

(Z=2 for Helium). This has lead to a subset of proposed wave functions, with accompanying

variational calculations, which include logarithms, although not the form employed by Fock.

One of these is an amazing calculation by Boumerzoug and Miletic [22] which included

a `n(r12 + e) term in their trial wave function and obtained -2.9024 a.u. with only two

variational parameters, a truly spectacular result. Unfortunately, they did not publish the

coefficients of their resultant wave function, and the computation has proven resistant to

verification. One notes, in passing, that their wave function displays the standard improper

local energy behavior characteristic of many currently employed Helium wave functions.

It is well known that there are a set of cusp conditions [23], which should be, a priori,

fulfilled. Usually, these are cited with respect to the r12 → 0 collision, where the Coulomb

repulsive energy grows without bound, but there are cusp conditions also at the nucleus

(origin) for each electron individually, as well as the “triple collision” cusp condition.

We therefore propose to revisit the Hylleraas scheme using wave functions which obey

both the origin and r12 cusp conditions, including the “triple collision”, a priori, reserving

any deviation for a “correlation” function which is variationally adjustable.

But the r12 cusp condition can be satisfied in more than one way. We have found, vide

infra, that the Hirschfelder [24]

ψ = e−2(r1+r2)
(
1 +

1

2
r12e

−αr12
)
g(r1, r2, r12) (1)

satisfies all the cusp conditions, and employs a “to be determined” function “g” to correct

for all the errors induced by the cusp determined functions and trumps the er12/2 form [25].

Hirschfelder never comments in his paper why he chose this form, but, serendipitously from

our point of view, it works better than the standard e−r12/2 term or variants thereof.
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As an operational Ansatz for the Helium Ground State wave function Equation 1 clearly

displays standard orbital characteristics while also employing one of the functional forms

for the primary correlation function [25, 26] known to be the leading (dominant) term in

the true complete correlation function (although other terms are not only possible, but may

actually speed the rate of convergence of the approximate calculations undertaken herein,

vide infra).

II. RESULTS

If one computes the energy, using the Hylleraas scheme [27], for various wave functions

of the type indicated by Equation 1 one obtains, for a first case, with g=1, E = −2.878 a.u.,

with α = −0.08.

Next, we attempt

ψ = e−2s
(
1 +

1

2
ue−1.013u

) (
1 + 0.2119s u+ 0.1406t2 − 0.003u2

)
where we have converted over to standard Hylleraas notation (s = r1 + r2,t = r1 − r2, and

u = r12). This wave function gives a variational energy of −2.901188 au. Schwartz [7, 8]

reports a 35 digit value of −2.9037243770 . . ., which means that our simple 4-parameter

wave function is within ∼ 0.003 a.u. of the “exact” answer.

III. DISCUSSION

If a 4-parameter wave function can achieve a result within ∼ 0.1% of the “exact” answer,

and exhibit local energy behavior which is demonstrably free of pathological behaviour, there

appears to be a reason to re-open the question of whether or not the pursuit of high accu-

racy atomic and molecular quantum mechanical calculations could be better pursued using

proper atomic number parameterized hydrogenic orbital products (which would eliminate

local energy problems at the nucleus) accompanied by a product of Hirschfelder correlation

functions (which would eliminate local energy problems in the electron-electron collision

regions), topped off with extra-Hirschfelder correlation functions of the Hylleraas type, suit-

ably enhanced.
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IV. APPENDIX

restart:

psi0 := exp(-2*s):

psi_corr := 1+u/2*exp(-1.013*u):

psi := psi0*psi_corr*(1+.2119256858*s*u+a*t^2-alpha*u^2);

alpha_last_cycle := 0.002;

last_cycle :=0.1;

t1 := diff(psi,s):

t2 := diff(psi,t):

t3 := diff(psi,u):

i1 := u*(s**2-t**2)*(t1**2+t2**2+t3**2)+2*t3*\n(s*(u**2-t **2)*t1+

t*(s**2-u**2)*t2)-\npsi**2*(4*2*s*u - s**2+t**2):

i1 := expand(i1,exp):

i1 := simplify(i1,power):

i1_eval := subs(s=0,int(int(int(i1,t=0..u),u=0..s),s)):

i1_eval := simplify(i1_eval):

n1 := u*(s**2-t**2)*psi**2:

n1_eval := subs(s=0,int(int(int(n1,t=0..u),u=0..s),s)):

n1_eval := simplify(n1_eval):

energy := i1_eval/n1_eval:

E := simplify(i1_eval/n1_eval):

Ealpha := subs(alpha=alpha_last_cycle,E):

Ea := subs(a=a_last_cycle,E):

for k from 1 to 10 do

min_Ealpha := minimize(Ealpha, a=a_last_cycle/2..3*a_last_cycle,location);

#fixed alpha

min_Ea := minimize(Ea,alpha=alpha_last_cycle/2..50*alpha_last_cycle,location);

#fixed a

print(‘min_Ealpha = ‘,min_Ealpha);

print (‘min_Ea = ‘,min_Ea);

temp := min_Ealpha[2]:
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ans := temp[1]:ans1 := ans[1]:ans2 := ans1[1]:

tempa := min_Ea[2]:

ansa := tempa[1]:ansa1 := ansa[1]:ans2a := ansa1[1]:

Ealpha := subs(ans2a,E):#function of a

Ea := subs(ans2,E):#functions of alpha

od;

Note added in proof.

Since the initial report, the program (above) has been enhanced from the original (into

its current form) which allowed a slight improvement in the reported result.

ψ = e−2s
(
1 +

1

2
ue−1.013u

) (
1 + 0.2119256858s u+ 0.1416353426t2 − 0.0113074102u2

)
with an “improved” value of -2.901332805 a.u.
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