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Lineage Tracing of Resident Tendon Progenitor Cells
during Growth and Natural Healing
Nathaniel A. Dyment1*, Yusuke Hagiwara1, Brya G. Matthews1, Yingcui Li1,2, Ivo Kalajzic1, David W. Rowe1

1 Department of Reconstructive Sciences, College of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America,

2 Department of Biology, College of Arts and Sciences, University of Hartford, Hartford, Connecticut, United States of America

Abstract

Unlike during embryogenesis, the identity of tissue resident progenitor cells that contribute to postnatal tendon growth
and natural healing is poorly characterized. Therefore, we utilized 1) an inducible Cre driven by alpha smooth muscle actin
(SMACreERT2), that identifies mesenchymal progenitors, 2) a constitutively active Cre driven by growth and differentiation
factor 5 (GDF5Cre), a critical regulator of joint condensation, in combination with 3) an Ai9 Cre reporter to permanently label
SMA9 and GDF5-9 populations and their progeny. In growing mice, SMA9+ cells were found in peritendinous structures and
scleraxis-positive (ScxGFP+) cells within the tendon midsubstance and myotendinous junction. The progenitors within the
tendon midsubstance were transiently labeled as they displayed a 4-fold expansion from day 2 to day 21 but reduced to
baseline levels by day 70. SMA9+ cells were not found within tendon entheses or ligaments in the knee, suggesting a
different origin. In contrast to the SMA9 population, GDF5-9+ cells extended from the bone through the enthesis and into a
portion of the tendon midsubstance. GDF5-9+ cells were also found throughout the length of the ligaments, indicating a
significant variation in the progenitors that contribute to tendons and ligaments. Following tendon injury, SMA9+
paratenon cells were the main contributors to the healing response. SMA9+ cells extended over the defect space at 1 week
and differentiated into ScxGFP+ cells at 2 weeks, which coincided with increased collagen signal in the paratenon bridge.
Thus, SMA9-labeled cells represent a unique progenitor source that contributes to the tendon midsubstance, paratenon,
and myotendinous junction during growth and natural healing, while GDF5 progenitors contribute to tendon enthesis and
ligament development. Understanding the mechanisms that regulate the expansion and differentiation of these
progenitors may prove crucial to improving future repair strategies.
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Introduction

Understanding the origin of resident tendon progenitors and the

factors that influence their differentiation are critical to designing

novel repair strategies. During development, tendon progenitors

originate in the sclerotome and express the basic-helix-loop-helix

transcription factor scleraxis (Scx) [1]. Scx+ cells contribute to the

tendon midsubstance as it condenses between the adjacent muscle

and cartilage. Sox9, a SRY-related transcription factor which is

important in cartilage differentiation, is co-expressed with Scx in

cells that eventually give rise to the tendon fibrocartilage within the

enthesis [2,3]. Sox9+ cells beneath this layer contribute to the

underlying bone while the adjacent muscle is derived from the

myotome. While our understanding of the origin of progenitors

that give rise to tendon in the embryo is improving, little is known

about the anatomical origin of resident progenitors within the

tendon that contribute to these regions during postnatal growth,

how these cells proliferate and expand in 3D space during growth,

and whether these cells also contribute to adult natural healing

following injury.

Recent studies have begun to identify and characterize the

progenitor niche within tendon. Bi et al showed that the small

leucine rich proteoglycans fibromodulin and biglycan contribute

to this niche [4]. Others have suggested that perivascular

progenitors exist within the tendon midsubstance and paratenon

[5,6]. In addition, researchers are beginning to isolate cells from

tendon that express stem/progenitor markers, show multi-potency

in vitro, and improve tendon repair in vivo [7,8]. However,

detailed in vivo lineage tracing of tendon progenitors demonstrat-

ing their expansion potential during growth and their reparative

potential following injury has not been pursued in great detail.

Alpha smooth muscle actin (aSMA), while highly expressed in

smooth muscle cells within blood vessel walls, is also a marker for a

mesenchymal progenitor that contributes to bone, fat, and

perivascular lineages [9–12]. aSMA is highly expressed in early

stages of primary bone marrow stromal cultures and aSMA+
progenitors within the stromal compartment contribute to

trabecular and endocortical bone formation while progenitors

within the periosteum contribute to callus formation during

fracture healing [9]. aSMA progenitors within the periodontium

contribute to the periodontal ligament and cellular cementum

during growth and may have a perivascular origin [13]. While

aSMA is expressed by myofibroblasts during early tendon healing

[14], it is unclear whether aSMA can identify progenitors within

tendon.
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Growth differentiation factor 5 (Gdf5) is a crucial regulator of

joint development and Gdf5+ progenitors contribute to the

formation of intra-articular structures including articular cartilage,

ligaments, fibrocartilage, and synovial lining [15]. Gdf5 deficiency

also delays tendon healing [16] but little is known whether Gdf5

regulates tendon development and maturation. The tendon

enthesis forms in a modular fashion from Scx and Sox9

progenitors within bone eminences near joints that do not arise

from the primary cartilage [3]. In fact, these Scx/Sox9 co-

expressing cells likely originate from the GDF5+ interzone and

extend to the lateral edges of the joint to form the eminences and

tendon attachments.

The objective of this study is to identify and characterize the

expansion of tissue resident tendon progenitors that contribute to

normal cell turnover during growth and natural healing during

adulthood. Through detailed lineage tracing of SMA9+ progenitor

cells, we found that SMA9+ cells in the tendon midsubstance are

an amplifying progenitor population during growth. These cells do

not contribute to the fibrocartilage within the tendon enthesis and

ligamentous cells within the knee, which originate from a Gdf5

lineage. Finally, SMA9+ progenitors in the paratenon are the

main contributors to the healing response following injury in the

adult patellar tendon.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use

Committee of the University of Connecticut Health Center

(Protocol Number: 100547-1015). All surgery was performed

under isoflurane anesthesia, and all efforts were made to minimize

suffering.

Transgenic Mice
Two Cre driver transgenic mice were utilized in this

study. aSMACreERT2. The tamoxifen-inducible aSMA-

CreERT2 mice, which label a mesenchymal progenitor cell

population, were described previously [9]. GDF5Cre: The

constitutively active GDF5Cre mice were shown previously to

contribute to several intra-articular structures [17].

Lineage tracing combinations. The Cre driver mice were

crossed with the Ai9 Cre reporter mouse line [18] (Jackson Labs),

which contains a loxP-flanked STOP cassette that prevents

transcription of CAG promoter-driven expression of tdTomato

fluorescent protein, resulting in aSMACreERT2-Ai9 (SMA9) and

GDF5Cre-Ai9 (GDF5-9) mice. In this strategy cell populations

that are the progeny of the cells that expressed the Cre driver at

the time of tamoxifen administration (SMA9) or at anytime in the

animal’s life (GDF5-9) will express the red fluorescent signal of Ai9

due to Cre-mediated excision of the STOP cassette.

Tendon and ligament marker. Along with anatomical

location, ScxGFP mice were used to clearly define cells within

tendon and ligaments [19,20]. These animals were crossed with

the SMA9 mice to generate a triple transgenic animal (SMA9-

ScxGFP) that can trace a progenitor cell into a cell type within the

tendon and ligament lineages.

A total of 52 transgenic mice were used for this study, including

22 and 30 transgenic mice for the growth and injury studies,

respectively.

Lineage Tracing during Tendon Growth
Two intraperitoneal injections of tamoxifen (Sigma Aldrich)

were delivered on consecutive days to 3–4 week old SMA9 or

SMA9-ScxGFP mice at a dose of 75 mg/g body weight. The

SMA9 labeled cells were then analyzed on 2, 21, 42, and 70 days

following tamoxifen treatment to assess their amplification during

growth, characteristic of a resident progenitor population (n = 3–5

per time point). The GDF5-9 mice were analyzed at the ages of P0

(day of birth) and P56 (8 week old) (n = 3 per time point).

Patellar Tendon Injury
Full-length, full-thickness, central third patellar tendon defects

were created in adult SMA9 and SMA9-ScxGFP mice (average

age = 2363 weeks). Following aseptic preparation, two #11

scalpel blades were clamped together with needle holders and

used to make longitudinal incisions to create the defect (0.4 mm

wide). The central region of the tendon was then excised and the

skin was closed with 5–0 nylon sutures. The contralateral limbs

were treated as uninjured controls. The animals were allowed free

movement within their cages until two photon and histological

analysis at 1, 2, and 5 weeks post-injury (n = 5 per time point).

Histology and Immunohistochemistry
Animals were euthanized via CO2 asphyxiation. Limbs were

fixed in 10% formalin for 1–2 days at 4uC and then imaged on the

two photon microscope. The samples were then transferred to

30% sucrose overnight and embedded in cryomatrix (Thermo-

fisher Scientific). Thin sections (8 mm) were made in several

tendons in both the fore and hind limbs using a cryofilm technique

(Section-lab, Hiroshima, Japan) [20,21] on a Leica CM3050S

cryostat. Natural healing sections were blocked (Power Block;

Biogenex) and stained with anti-tenascin-C (1:500; Abcam)

overnight at 4uC. The slides were incubated with a secondary

antibody (Alex Fluor IgG 647; Life Technologies), counterstained

with DAPI, and imaged on a Zeiss Imager-Z1 microscope.

Two Photon Imaging
Formalin fixed limbs were submersed in 1X PBS during

imaging on the Prairie Ultima IV multiphoton microscope using a

20X/0.95W Olympus water immersion objective. All fluorophores

(GFP and tdTomato) and second harmonic generation (SHG) for

collagen were visualized at an excitation wavelength of 890 nm

and bandpass filters of 435–485 nm (SHG), 500–550 nm (GFP),

and 570–620 nm (tdTomato). Multiple tiled stacks (4596459 mm/

tile) were acquired at either 2566256 or 5126512 resolution with

z-depth increments of 1.8 mm. Tiled stacks were stitched using the

grid/collection stitching plugin [22] and 3D reconstructions were

created using the 3D viewer plugin [23] within Fiji image analysis

software [24].

Image Analysis
All image quantification was done using Fiji image analysis

software [24].

Growth study. The number of SMA9+ cells within the

tendon midsubstance were quantified from sagittal sections of the

patellar tendon at 2, 21, and 70 days following the last tamoxifen

injection. A region of interest was manually drawn to capture the

tendon midsubstance without the proximal or distal attachments.

Eight-bit grayscale images from the dapi channel were converted

to binary images by setting an equivalent threshold across the

treatment groups. A watershed was applied to segment nuclei

which were touching. The number of nuclei was then counted

using the analyze particles function within Fiji. Since the

Lineage Tracing of Tendon Progenitor Cells
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tdTomato fluorescent signal overlays with the cell nucleus, the

binary dapi channel was used as a mask to quantify the mean

grayscale intensity of the tdTomato signal within the area of each

nucleus. The SMA9+ positive cells above a minimum intensity

threshold were then quantified and reported as percentage of the

total number of cells within the tendon midsubstance.

Injury study. The SMA9+ and ScxGFP+ cells were quan-

tified from two photon image stacks at 1, 2, and 5 weeks post-

injury. A minimum threshold was applied to each SMA9 and

ScxGFP stack to create binary images of positive intensity. The

positive area for each individual channel was quantified and the

two channels were overlaid to quantify the double positive

(SMA9+ ScxGFP) area. The SMA9, ScxGFP, and double positive

cell areas were quantified in 3 regions of interest (800 mm

long6400 mm wide) at distal, mid, and proximal regions of the

defect.

Statistics
The number of SMA9+ cells in the patellar tendon during

growth was analyzed via one-way ANOVA with time post-

injection as the fixed factor (p,0.05). The number of SMA9 cells

within multiple tendons was also compared at day 21 via one-way

ANOVA. Following injury, the area of SMA9, ScxGFP, and

double positive cells was analyzed via one-way MANOVA with

time post-surgery as the fixed factor (p,0.05).

Results

SMA9+ Cells Exist in 4 Distinct Populations in and around
Tendons

The resident tendon progenitors that contribute to postnatal

growth and normal cell turnover are not well characterized.

Lineage tracing of SMACre+ cells in 3–4 week-old SMA9 and

SMA9-ScxGFP mice was determined at 21 and 42 days post

tamoxifen activation (Figs. 1–2; anatomical locations for figures 1

and 2 can be found in figure S1). The labeled populations were

visualized in three dimensions using two photon microscopy and

defined by anatomical location, cell morphology, and/or GFP

reporter expression. Four distinct populations of cells in and

around tendons were identified: 1) circumferentially oriented, ring-

like smooth muscle cells surrounded by adventitial collagen (as

seen by second harmonic generation signal in blue) in larger

vessels outside the tendon (Fig. 1A), 2) perivascular cells on the

surface of smaller vessels outside the tendon (Fig. 1A–B,G), 3) cells

in the paratenon (Fig. 1B, 2H), tendon sheath (Fig. 1D), or

retinaculum (Fig. 1G) surrounding the tendon body, and 4)

elongated SMA9-ScxGFP+ cells oriented between collagen fibers

within the tendon midsubstance (Fig. 1C,F,H). All four of these

populations are found in various limb tendons investigated in this

study including the patellar, Achilles, superficial digital flexor

(SDF), supraspinatus, and flexor/extensor tendons in the wrist at

21 and 42 days post-injection (Figs. 1–2).

SMA9+ cells in population 3 are either 1) situated within

circumferentially oriented collagen fibers in the paratenon

(Fig. 2H, S2), tendon sheath (Fig. 1D), or retinaculum (Fig. 1G)

or 2) residing on the outer surface of the tendon proper just

beneath the collagen fibers of the paratenon (Fig. 1B,E). The cells

on the tendon surface have a flattened morphology while cells

within the peritendinous structures are more elongated and

orientated along collagen fibers. Cells within population 3 are

primarily ScxGFP negative unlike cells in population 4 within the

tendon that are both SMA9+ and ScxGFP+ at all time points

investigated in this study (Figs. 1F,H and 2C,I), albeit the intensity

of the ScxGFP signal varies from cell to cell. These cells are highly

aligned along the tendon axis and are situated between densely

packed collagen fibers.

In addition to cells within and around the tendon midsubstance,

SMA9+ cells were found at the myotendinous junction (MTJ)

(Fig. 2). Elongated SMA9/ScxGFP+ cells exist between collagen

fibers of the tendon body distal to the MTJ (Fig. 2D,I). A

combination of SMA9/ScxGFP+ and SMA9+ cells reside on the

tendon surface (Fig. 2H) near the MTJ and in the perimysium

surrounding the muscle that runs continuously with the tendon

sheath, as seen in the EDM tendon (Fig. 2F–G). SMA9+ muscle

fibers are observed at later time points following tamoxifen

injection (Fig. 2H–J).

SMA9 Cells in the Tendon Midsubstance are an
Amplifying Resident Progenitor Population

Following the establishment that SMA9+ cells are found in 4

distinct populations in and around the tendon, we next questioned

whether the cells in the body of the tendon (population 4) are an

amplifying resident progenitor population that expands during

growth. Growing mice (3–4 week-old) were injected on consecu-

tive days with tamoxifen and the patellar tendons were assessed at

2, 21, and 70 days post-injection. On day 2, SMA9+ cells are

found in all four populations described in the previous section

(Fig. 3A,D). The cells within the tendon midsubstance are

dispersed throughout the volume of the patellar tendon, consti-

tuting 3.161.5% of total cells (Fig. 3G), and they are all Scx+ (Fig.

S3). By day 21, the population at 2 days amplifies by over 4-fold to

13.564.4% of cells in the tendon midsubstance (p,0.05;

Fig. 3B,E,G). These cells appear to be dispersed throughout the

tendon volume and there is little evidence of clonal expansion

except within linear cell arrays, which show multiple labeled cells

in succession. This pattern is not consistent however as seen in

figure 1F where the SMA9+ cells alternate within the linear array.

It also appears that this expanded population came from the cells

labeled within the tendon body on day 2 and not cells within the

paratenon on day 2, as there is often space between the internal

population and tendon surface that did not contain SMA9+ cells

(Fig. S4). When the chase is assessed on 70 days following injection

(Fig. 3C,F), the number of cells in the tendon midsubstance

diminishes to day two levels (2.860.4%, Fig. 3G), suggesting that

the SMA9 model transiently labels an amplifying progenitor

source within the body of the tendon during growth.

While these cells have the ability to expand during growth

within the patellar tendon, other tendons show varying levels of

expansion. When comparing the number of SMA9+ cells at day

21 within the patellar, Achilles, and supraspinatus tendon, we find

that the expansion of SMA9 cells in the Achilles (2.561.3% of

total) is significantly reduced compared to the other tendons (p,

0.05; Fig. 3H). However, the number of SMA9 cells within the

patellar and supraspinatus tendons was comparable (13.564.4%

and 12.965.3, respectively).

SMA9 Cells do not Contribute to Fibrocartilage in the
Tendon-to-Bone Insertion Site or Ligaments

While SMA9+ cells are found throughout the tendon midsub-

stance and myotendinous junction at all time points, there are no

SMA9+ cells in the fibrocartilage of the tendon-to-bone insertion

(Fig. 3A–C). This is true in every tendon evaluated in this study

and at every time point. There are also no SMA9+ cells in the

cruciate and collateral ligaments of the knee (see PCL in Fig. 3B–

C).

Lineage Tracing of Tendon Progenitor Cells
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Figure 1. SMA9 model labels 4 distinct cell populations in and around the tendon midsubstance. Following tamoxifen injection, SMA9+
cells (Red) are found in 1) smooth muscle cells in large blood vessels outside of the tendon (A), 2) perivascular cells in smaller vessels (A,B,G), 3)
paratenon/sheath/retinacular cells on the tendon surface (B,D,E,G), and 4) tendon fibroblasts within the midsubstance (C,F,H) of the patellar (PT),
flexor carpi ulnaris (FCU) tendon, Achilles (AT), and superficial digital flexor tendons (SDF) on 21 days (A–C,G) and 42 days (D–F,H) following injection.
Images and 3D reconstructions (G) were created using two photon microscopy in SMA9 (A–C,G) and SMA9-ScxGFP mice (D–F,H). SMA9+ cells within
the tendon body are ScxGFP+ (green) (F,H), unlike SMA9+ in the paratenon and tendon sheath (D–E). B&C are optical slices at the tendon surface and
50 mm deep in the PT, respectively. D–F are optical slices at the surface of the sheath, middle of the sheath, and 130 mm deep, respectively. G displays
SMA9+ cells in the retinaculum covering the SDF and AT. Blue – second harmonic generation (SHG) for collagen. Scale bars = 100 mm. The authors
encourage the readers to view figure S1 for the anatomical location of each panel in this figure.
doi:10.1371/journal.pone.0096113.g001
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GDF5-9 Model Labels all Cells in Ligaments and Regions
of Tendon near Bone

Because SMA9+ cells are not found within the fibrocartilage of

the tendon enthesis or within the ligaments of the knee and

developmental studies show that distinct sets of progenitors form

the enthesis vs the midsubstance [2], we investigated whether

GDF5+ cells originating from the joint interzone would contribute

to these regions. We crossed GDF5Cre mice with Ai9 reporter

mice to demonstrate whether these regions came from Gdf5-

expressing cells. These mice were analyzed at P0 (during tendon

maturation) and P56 (during later stages of tendon growth). We

found that GDF5 labels a population of cells (GDF5-9+) that

extends from the tendon midsubstance, through the enthesis, and

into the underlying bone.

During these different stages of tendon and joint development,

GDF5-9+ cells are found within the fibrocartilage of the tendon

enthesis of the patellar and supraspinatus tendons (Fig. 4A,C,D,F).

A portion of cells isolated to the posterior half of the patellar

tendon midsubstance is also GDF5-9+ (Fig. 4A,D). In addition, all

ligamentous cells spanning from bone to bone are GDF5-9+ in the

cruciate and collateral ligaments of the knee (Fig. 4A,B,D,E).

There are also GDF5-9+ cells within the articular cartilage and

within the epiphyseal bone but they were not found within the

residual growth plate or the bone beneath the growth plate.

Figure 2. SMA9+ cells are found in the tendon body, perimysium, and muscle fibers at the myotendinous junction. A–D) SMA9+ (red)
cells in the supraspinatus tendon (ST) span from the anterior surface near the enthesis (ENT) to the myotendinous junction (MTJ) at 42 days post-
injection. E–G) SMA9+ and SMA9/ScxGFP+ cells are found at the muscle-tendon interface and in the perimysium (PM) of the extensor digiti minimi
(EDM) tendon at 21 days. Dotted lines in E–G refer to orthogonal slices in the x–y, x–z, and y–z planes. SMA9/ScxGFP+ tendon fibroblasts and SMA9+
paratenon cells and muscle fibers are found at the MTJ of the Achilles tendon (H–J) 42 days. H&I are optical slices at the tendon surface and 30 mm
deep in the AT, respectively (J is 3D reconstruction of H and I). All images were taken using two photon microscopy. Blue – second harmonic
generation (SHG) for collagen. Scale bars = 100 mm. Anatomical locations of images can be found in figure S1.
doi:10.1371/journal.pone.0096113.g002

Lineage Tracing of Tendon Progenitor Cells
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SMA9 Resident Progenitors are the Main Contributors to
Patellar Tendon Healing

Since SMA9 progenitor cells were found to contribute to cell

turnover during tendon growth, we next determined whether they

contribute to tendon healing in the adult. We utilized a full-length,

central-third patellar tendon defect injury used previously [20,25]

to examine the reparative potential of SMA9+ cells in the

paratenon and tendon midsubstance. One week following injury,

there is notable expansion of SMA9+ cells in the thickened

paratenon, which forms in response to injury (Fig. 5A–G and

S5A,E,I). The SMA9+ paratenon cells are initially found in the

medial and lateral surfaces of the retinaculum (S5A,E,I) as well as

on the surfaces of the tibia and patella (Fig. 5O,P). These SMA9+
cells expand to form an anterior bridge over the defect space by 2

weeks following injury (Fig. S5B,F,J and 6K–T). SMA9+ cells

originating in the paratenon also infiltrate regions of the adjacent

tendon struts as they remodel following injury (Fig. 5J, 6Q, and

S5J,K). The thickened paratenon and remodeling regions of the

struts are rich in tenascin-C (Fig. S5E–G in green), which forms a

provisional matrix during healing.

The paratenon cells in the anterior bridge synthesize collagen

fibers that are aligned perpendicular to the tendon axis over the

adjacent struts as the cells expand from the anterior surfaces of the

medial and lateral retinaculum (Fig. 5K,L). The collagen within

the bridge consists of loose, small-diameter collagen fibers with

poor organization at 1 week (Fig. 5D,E). By 5 weeks, the collagen

matures in the bridge with thicker, densely packed fibers (Fig. 5K).

Figure 3. SMA9 model transiently labels an amplifying resident progenitor population in the tendon midsubstance during growth.
A pulse chase experiment where two tamoxifen injections were given on consecutive days to 3–4 week old mice revealed that the initial number
(3.161.5% of total) of resident SMA9+ cells (red, arrows) in the tendon midsubstance at 2 days (A,D,G) following injection expanded over 4-fold to
13.564.4% at 21 days (B,E,G) and then reduced to day 2 levels by 70 days (C,F,G). Trabecular bone in the tibia shows a similar trend, while muscle
fibers in the quadriceps were labeled at later time points (C). No SMA9+ cells were found in the fibrocartilage of the enthesis or ligaments in the knee
at any time point. In addition, the number of expanded cells on day 21 was significantly higher in the patellar (PT) and supraspinatus (ST) tendons
compared to the achilles (AT) tendon (H, p,0.05). Blue – dapi counterstained nuclei. PCL – posterior cruciate ligament. Scale bars = 250 mm.
*significantly different than other time points, ‘significantly different than other tendons. Error bars denote 6 SD.
doi:10.1371/journal.pone.0096113.g003
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Figure 4. Unlike the SMA9 model, GDF5-9 cells are found within the fibrocartilage of the tendon enthesis and throughout the
length of ligaments. GDF5-9+ cells are expressed in cells within the cruciate ligaments (ACL, PCL) from bone to bone (A,B,D,E). GDF5-9+ cells are
concentrated near the enthesis of the supraspinatus tendon (ST) and do not extend along the length of the midsubstance (C,F). However, GDF5-9+
cells are found along the posterior half of the PT (A,D). GDF5-9 cells are also found within articular cartilage, menisci, collateral ligaments, synovium,
and epiphyseal bone in the knee. These expression patterns are similar between the ages of P0 (A–C) and P56 (D–F) except the epiphyseal bone is not
labeled at P0, which is before secondary ossification. Blue – dapi counterstained nuclei. LCL – lateral collateral ligament, MCL – medial collateral
ligament. Scale bars = 250 mm.
doi:10.1371/journal.pone.0096113.g004
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However, the packing density is reduced compared to normal

tendon or the adjacent struts (Fig. 5M).

A minimal number of SMA9+ cells are found in the

contralateral, uninjured tendons (Fig. S5D,H,L). There are

SMA9+ cells in the paratenon and tendon midsubstance, along

with perivascular cells in small vessels outside of the tendon (Fig.

S5L). However, the cells in the paratenon and tendon midsub-

stance did not expand over the 5 week time frame in these adult

animals (Fig. S5H).

SMA9+ Progenitors at 1 Week Post-injury Differentiate
into ScxGFP+ Cells at 2 Weeks Post-injury

While SMA9+ cells within the paratenon expand to form a

collagenous bridge over the defect space, we do not know if these

cells differentiate into ScxGFP+ tenogenic fibroblasts or are non-

specific scar fibroblasts. Therefore, we injured SMA9-ScxGFP

triple transgenic mice. At 1 week following injury, there is a

mixture of SMA9+ (white arrows, Fig. 6D–F, Video S1) and

ScxGFP+ cells within the paratenon bridge; however, only

12.568.0% of these cells are double positive (Fig. 6A–J,V). At 2

weeks when the collagen within the bridge matures, the SMA9+
cells within the collagen are also ScxGFP+ (yellow arrows, Fig. 6N–

P) while SMA9+ cells on the anterior surface above the mature

collagen are still ScxGFP negative (white arrows, Fig. 6K–M).

Taking these two populations into account, 65.5610.6% of the

total SMA9+ cells are SMA9-ScxGFP double positive at 2 weeks

(Fig. 6V), which is significantly greater than at one week (p,0.05).

As the paratenon bridge continues to mature at 5 weeks, there is

reduced overlap in SMA9 and ScxGFP expression (18.169.3%).

Discussion

Tendon is a composite structure with unique developmental

and mechanical characteristics. It connects two tissues with distinct

embryological origins: 1) bone from the sclerotome and 2) muscle

from the myotome. The coordinated patterning during embryonic

development involves separate progenitor pools to create the

enthesis, tendon midsubstance and myotendinous junction [2,3].

Once developed, tendons need to transmit tremendous contrac-

tion forces generated in the muscle down to the bone to enable

skeletal movement. This transition is mechanically demanding as

muscle and bone have orders of magnitude differences in

mechanical properties, thus the tendon must be stiff enough to

efficiently transfer load with minimal strain but also must integrate

with these mechanically distinct structures in a fashion that

reduces the stress concentrations at the interfaces. In addition, the

tendon needs to adapt to the somatic growth of the individual both

in terms of length and the increasing load it has to transmit

secondary to a larger body size and increased utilization. Defining

the cellular contributions to the tendon and its interaction with

bone and muscle will be fundamental to understanding the

molecular basis of this complex process.

Tendon has embryonic origins within Scx+ progenitors that

reside in the region of the sclerotome adjacent to the myotome,

known as the syndetome [1]. As the tendon condenses, Scx+/

Figure 5. SMA9+ progenitors form a collagenous bridge over the anterior surface of the PT defect. Two photon imaging shows that
SMA9+ cells within the thickened paratenon synthesize collagen (SHG signal in blue and grey) as they form the paratenon bridge. These cells
originate from the medial and lateral tendon struts (G,N) and also from the anterior aspect of the tibia (O,P) and patella (data not shown). While these
cells originate from the paratenon and vasculature, they infiltrate the adjacent struts over time (J). The collagen in the bridge matures from 1 week
(A–G) to 5 weeks (H–U). G,N,U) 3D reconstructions in the axial view depicting the 3 levels in the anterior view (A–F, H–M, O–T). Scale bars = 100 mm.
doi:10.1371/journal.pone.0096113.g005
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Sox9+ cells form a protrusion of fibrocartilage that anchors the

tendon to bone (enthesis) [2,3]. Concurrently, Scx+ progenitors at

the MTJ synthesize collagen fibrils that attach to actin filaments

within the sarcolemma to form the muscle attachment [26]. Once

the enthesis-MTJ unit is formed, the tendon begins to lengthen to

accommodate the somatic growth and to increase tendon fibril

diameter to transmit greater mechanical loads. These morphologic

changes suggest that both linear and appositional positioning of

the progenitor cells is a requirement for normal somatic growth.

Scx is required for proper tendon differentiation as it is initially

expressed in an early progenitor and remains active throughout

differentiation. Unfortunately, this means that Scx becomes less

useful to label a progenitor population in a growing tendon as it is

expressed in nearly all cells within the tendon body. Therefore,

new markers are needed to characterize subtleties within the

tendon cell population that contribute to tendon growth and

maturation.

Our study has demonstrated that the SMA9 model marks an

amplifying progenitor population capable of generating tendon

cells, just as it does other mesenchymal tissues [9–12]. In the

weanling mice that we studied, these cells arise within the body of

the tendon and do not appear to migrate into the tendon from a

peritendinous site (Fig. S4). The amplifications of these cells, which

has not been seen previously using proliferation markers such as

BrdU, is transient as the number of SMA9+ cells reduces to

baseline levels after 10 weeks of expansion (Fig. 3G). Thus the

Figure 6. SMA9+ progenitors in the expanded paratenon differentiate into ScxGFP+ cells at 2 weeks post-injury. SMA9+ cells (white
arrows, D–F) at one week post-injury (A–J) are predominately negative for ScxGFP as seen in two photon image stacks in SMA9-ScxGFP mice.
However, these cells differentiate into ScxGFP+ cells (yellow arrows, N–P,V) at 2 weeks (K–T) within the collagenous regions of the paratenon bridge
while SMA9+ only cells still remain on the anterior surface (white arrows, K–M). By 5 weeks, there is reduced overlap in SMA9 and ScxGFP expression
(V). J,T) Axial views depicting the 3 levels in the anterior views (A–J, K–T) of the defects at 1 and 2 weeks, respectively. U) Total area of SMA9 and
ScxGFP positive signal at 1, 2, and 5 weeks. V) SMA9-ScxGFP double positive area normalized to either total SMA9 or ScxGFP area, respectively. Scale
bars = 100 mm. *significantly different than 1 and 5 weeks, ‘significantly different than 1 week (p,0.05). Error bars denote 6 SD. Full z-stacks can be
found in Video S1.
doi:10.1371/journal.pone.0096113.g006
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population of SMA9+ cells is gradually replaced by unmarked cells

as the tissue continues to grow in length and maturity. However,

further characterization of these cells is needed to understand their

phenotype and how to regulate their differentiation, especially

since immunostaining for aSMA shows minimal expression in

these cells (data not shown). Therefore, our future studies will

isolate the SMA9+ cells to develop an expression profile for these

early progenitors to characterize their phenotype and identify new

and possibly improved markers.

Interestingly, the expansion of SMA9 resident progenitors

differs from tendon to tendon. In fact, the number of SMA9+ cells

at 21 days following injection is significantly reduced in the

Achilles tendon compared to the patellar and supraspinatus

tendons (Fig. 3H), while numbers at 2 days were comparable

amongst these tendons (data not shown). The reduced expansion

seen in the Achilles midsubstance also correlates with reduced

mineral apposition rate of the mineralized fibrocartilage of the

enthesis (unpublished data) during this time period. The cause of

these differences is unknown and suggests that the cell and matrix

turnover of the Achilles is reduced at this age of growth, which is

puzzling as the Achilles continues to grow linearly with the tibia

during this period. It is possible that the mechanism of growth in

the Achilles may be different from other tendons.

While SMA9+ progenitors contribute to the tendon midsub-

stance, they do not contribute to cells within the fibrocartilage of

the tendon insertion, which are derived from GDF5-9+ cells.

GDF5-9+ cells contribute to the enthesis along with a segment of

the tendon midsubstance (Fig. 4). This lineage driver indicates that

the enthesis may develop from the interzone cells that generate the

structures within the forming joint space [15]. This observation is

consistent with previous work demonstrating that Scx+/Sox9+
progenitors, distinct from the primary cartilage, form the enthesis

during embryogenesis, while Scx+ only progenitors form the

midsubstance [2]. These findings lend credence to the composite

nature of tendon and the heterogeneous origin of cells within these

regions.

One of the interesting outcomes of this study was that the

patellar tendon was the only tendon analyzed that had GDF5-9+
cells along the whole tendon length, spanning from patella to tibia

on the posterior side of the tendon. This contributes to the debate

on whether the patellar tendon is indeed a tendon or a ligament.

Anatomical, architectural, and cell lineage analysis suggests that it

may be a mixture of both. By the purest definition, the patellar

tendon is a ligament as it attaches bone (patella) to bone (tibia).

However, the patella is a specialized sesamoid bone that forms

from a pool of Scx+ progenitor cells during development, as

knocking out Sox9 in Scx-expressing cells will prevent the patella

from forming at all [2]. If the SMA9 model marks a consistent

progenitor pool from tendon to tendon but doesn’t label a pool

within ligaments, this suggests that the patellar tendon is more

tendon-like as well. However, GDF5, which is highly expressed in

ligaments, is also expressed on the posterior half of the patellar

tendon. Therefore, the patellar tendon has unique tendinous and

ligamentous properties.

In addition to SMA9+ progenitors cells’ contribution to tendon

growth, SMA9+ progenitors amplify following injury and are the

main contributors to healing of the central PT defect (Fig. 5–7).

These cells are found within an expanded paratenon that extends

from the adjacent retinaculum to span the defect space (Fig. 7). In

addition, cells from the periosteum on the anterior surface of the

tibia also expand in response to the tendon injury and work to fill

the space near the tibial insertion (Fig. 5O–U). Perivascular cells

within the expanded paratenon are also SMA9+ (Fig. 5I).

Unfortunately, we cannot discriminate between the relative

Figure 7. SMA9+ cells from the paratenon/periosteum of the adjacent tendon and bone are the main contributors to PT healing.
Schematic depicts the origin and directional expansion of cells that contribute to PT defect healing. These cells originate within the paratenon in the
tendon and retinaculum of the medial/lateral aspects as well as paratenon/periosteum over the proximal and distal bones. As the cells form the
anterior bridge over the defect space, they begin to align along the tendon axis. MR – medial retinaculum, LR – lateral retinaculum.
doi:10.1371/journal.pone.0096113.g007
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contribution of the paratenon and perivascular progenitors in this

SMA9 model, which is a limitation that requires additional

markers to isolate the perivascular from the paratenon popula-

tions.

As the repair process matures, the cells over the defect space

acquire an elongated morphology in parallel with the native

tendon and express the ScxGFP reporter (Fig. 6N). However few

of these cells become incorporated into the native tendon or fuse

with the ligated ends of the central tendon defect (Fig. 5Q,T).

Instead this new peritendinous tissue is distinctly separate from the

adjacent tendon and matures with time, leading to improved

mechanical properties [25]. Interestingly, the number of SMA9-

ScxGFP double-positive cells in the paratenon reduces from 2 to 5

weeks post-injury (Fig. 6V). This reduction could be caused by cell

turnover as there are fewer SMA9 cells at 5 weeks (Fig. 6U) or

these SMA9+ cells that were ScxGFP+ at 2 weeks are ScxGFP

negative at 5 weeks. We have previously shown that the

mechanical improvement of the healing tissue plateaus at 5 weeks

[25], which may suggest that maintaining Scx expression in these

cells for longer periods may lead to continued improvement and is

a focus of our future strategies.

We also see a similar mechanism of healing in response to long

bone fracture where SMA9+ progenitors within the periosteum

are the main contributors to the callus formation [9,27]. These

data combined suggest that adventitial structures surrounding both

tendon and bone, which are also highly vascularized, may hold a

reserve of SMA9+ progenitors that activate and amplify in

response to injury. A better understanding of the phenotype of

these progenitors and how to promote their differentiation during

healing will be critical for improving repair outcomes of these

injuries. Future studies will investigate these mechanisms using the

SMA9 model.

This study underlines the complexity and heterogeneity of cells

that initially form the midsubstance of tendons and subsequently

participate in a reparative response to injury. Although both map

to the similar SMA9+ progenitor sources, they appear to have

different locations and capabilities. Models of regeneration in the

intestine, hair follicle and hematopoietic system suggest that a

tissue resident stem cell undergoes asymmetrical division in which

the daughter cells have three potential fates: 1) return to a

quiescent and mitotically inactive state, 2) enter a differentiated

inactive state capable of rapid reactivation for formation of

multiple cell types, or 3) enter a pool of transient amplifying cells

with a constrained differentiation fate as seen with the SMA9

model during growth [28]. Stochastic factors that are inherent to

the tissue niche probably control which option the daughter stem/

progenitor cells choose. Genetic strategies to distinguish these

three states have been developed for epithelial tissues and this will

be the challenge for the skeletal biologist. Identifying cells within

the tendon and adjacent tissues and learning how to manipulate

their expansion and differentiation will be a requirement for

developing reparative strategies that might lead to a fully

functional and long-lived outcome.

Supporting Information

Figure S1 Anatomical locations of images in figures 1
and 2. A) Posterior view of ankle depicting Achilles tendon (AT)

with overlapping superficial digital flexor (SDF) tendon. B)

Anterior view of patellar tendon (PT). C) Anterolateral view of

flexor carpi ulnaris (FCU) tendon in the wrist. D) Superior view of

supraspinatus tendon (ST) in shoulder following reflection of

deltoid muscle and clavicle/acromion. E) Posterolateral view of

extensor digiti minimi (EDM) tendon with adjacent extensor carpi

ulnaris (ECU) tendon in the wrist. The area for each panel in

figures 1 and 2 are denoted by black boxes. Panel E’ is high

magnification view of the red box in panel E.

(TIFF)

Figure S2 Paratenon cells within circumferentially
oriented collagen fibers are SMA9+. Composite two photon

image of SMA9/ScxGFP Achilles tendon at 42 days post-

injection. Arrows point to SMA9+ cell situated on collagen within

the paratenon, which wraps around the tendon surface. Red –

SMA9+ cells, Green – ScxGFP+ cells, Yellow/Orange – SMA9+/

ScxGFP+ cells, Blue – SHG for collagen.

(TIFF)

Figure S3 Two days following tamoxifen injection,
SMA9+ only cells are found within the paratenon (arrow
heads) on the tendon surface while SMA9+/ScxGFP+
cells are found within the tendon body (arrows). A–B) 3D

reconstruction in the anterior view of the patellar tendon where

the tendon axis runs in the y-direction. C–D) The 3D

reconstruction from A & B was rotated to an anterior-lateral

view. Red – SMA9+ cells, Green – ScxGFP+ cells, Yellow/

Orange – SMA9+/ScxGFP+ cells, Blue – SHG for collagen.

(TIFF)

Figure S4 There is often a gap between population 3 on
the tendon surface and population 4 within the tendon
body. A–B) Thin section in the transverse orientation of the PT of

a SMA9/ScxGFP mouse. C–D) 3D reconstruction in the anterior

view of the patellar tendon where the tendon axis runs in the y-

direction. E–F) 3D reconstruction in the lateral view. G–H) 3D

reconstruction in the axial view. Red – SMA9+ cells, Green –

ScxGFP+ cells, Yellow/Orange – SMA9+/ScxGFP+ cells, Blue –

cell nuclei (A–B) and SHG for collagen (C,E,G).

(TIFF)

Figure S5 SMA9+ paratenon cells contribute to patellar
tendon defect healing. Full-length, central PT defects were

created in adult mice. Tamoxifen injections were delivered on the

day of surgery and the day following. SMA9+ progenitors within

the paratenon expand in response to injury, leading to a thickened

paratenon compared to normal tendon (D,H,L). By one week

(A,E,I), SMA9+ cells from the paratenon and perivasculature have

reached the defect space. A bridge over the anterior surface forms

by 2 weeks (B,F,J) and matures at 5 weeks (C,G,K). Tenascin-C

(green) is a major ECM component in this healing matrix where

the SMA9+ cells are located. A–D are toluidine stained sections.

Blue – dapi counterstained nuclei. Scale bars = 100 mm.

(TIFF)

Video S1 Multiphoton z-stacks of PT defects at 1, 2, and
5 weeks in SMA9-ScxGFP mice. 1st row – Red: SMA9,

Green: ScxGFP, Blue: SHG for collagen. 2nd row – Red: SMA9,

Green: ScxGFP. 3rd row – Gray: SHG for collagen. 4th row –

Transverse view of rows 1–3. Dotted line refers to depth within

tendon starting at anterior surface and moving deeper into tendon.

(AVI)
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