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Abstract 

The adoption of genetically engineered (GE) crops has created a demand for practical 

methods to mitigate pollen dispersal and gene flow.  The goal of this project was to measure 

the ability of a narrow forest windbreak to reduce downwind pollen fluxes from switchgrass 

(Panicum virgatum L.), a North American grass and model biofuels feedstock.  Switchgrass 

fields were established in two identical plots where one had a forest windbreak and the other 

was in an open (control) site.  Switchgrass reproduction, pollen dispersal, wind speed, and 

wind direction were measured over two years.   Daily release of switchgrass pollen peaked at 

11:00-13:30 during a flowering period that lasted about 44 days.  The best estimate for 

switchgrass pollen source strength (PSS) was 141 × 109 pollen/season/hectare for fields 

planted at commercial densities.  The forest windbreak consistently decreased downwind 

switchgrass pollen concentrations by 333-20,000 fold compared to the control plot which 

had a 58-77 fold decrease due to downwind distance alone.  These results suggest that 

forest windbreaks could be used as a barrier to reduce pollen dispersal and gene flow 

from switchgrass and other crops. 

 

Keywords: coexistence, gene flow, Panicum virgatum, pollen source strength, 

switchgrass, windbreak 
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1. Introduction 

Plant gene flow, the movement of genes from one plant population to another, is a natural 

part of plant reproduction and speciation [Ellstrand, 2014].   However, pollen-mediated gene 

flow from genetically engineered (GE) crops has created huge challenges for farms with or-

ganic certification, producers of identity-preserved crops, seed companies that must maintain 

genetic purity, companies producing non-GE food products, and government agencies regu-

lating biocontainment of experimental field trials [USDA AC21, 2012, Wilkinson and Tep-

fer, 2009, Andow and Zwahlen, 2006, Auer, 2008].  Furthermore, the dispersal of some 

transgenic pollen might negatively impact native plant communities, non-target organisms, or 

the broader environment over time.  Unfortunately, there are few practical methods to reduce 

pollen dispersal and gene flow from agricultural fields.  This project examined the ability of a 

narrow forest windbreak to reduce downwind pollen concentrations from fields of switchgass 

(Panicum virgatum L.), a lignocellulosic biofuel crop.  The long-term goal was to develop 

tree windbreaks as a practical method of reducing pollen-mediated gene flow while enhanc-

ing ecosystem services in the landscape. 

In theory, gene flow from wind-blown pollen can be reduced by geographic 

features [Graves et al, 2014], appropriate isolation distances [Slatkin, 1993], specific 

agricultural practices (e.g. barriers, trap crops, or buffer rows) [McNaughton, 1988], or 

genetic engineering techniques [Ellstrand and Hoffman, 1990].  At present, only isolation 

distances and trap crops are used to reduce transgene movement.   Pollen dispersal by wind is 

affected by various factors including wind speed and direction [Clark et al, 2005, Ecker et 

al, 2013, Hoyle and Cresswewll, 2007, Jia et al, 2007, Pfender et al, 2007, Wang and 

Yang, 2010, Wang et al, 2004].  A Lagrangian model of switchgrass pollen dispersal 



 

4 
 

under typical summer wind conditions in the Northeastern US showed that viable pollen 

could be transported 3.5 km – 6 km from the source field [Ecker et al, 2013].  Thus, 

reducing wind speeds across agricultural fields (pollen sources) could play a role in 

reducing crop-to-crop, crop-to-wild, or crop-to-weed gene flow.  Another important 

factor in gene flow is pollen source strength (PSS), defined in this study as the quantity of 

pollen that can be dispersed per unit crop area [Muilenberg, 1995].  This study is the first 

to predict PSS for commercial switchgrass fields. 

Windbreaks reduce wind speed, and they have been used for various applications 

including the protection of crops and livestock [Brandle et al, 2004].  The 

micrometeorological changes produced by windbreaks and forest edges have been well 

studied [Dupont et al, 2007, Eimern et al, 1964, Heisler et al, 1988, McNaughton, 1989, 

Patton et al, 1998]. Windbreaks produce turbulence in the wind field that dissipates the 

flow’s kinetic energy, which suppresses downwind wind speeds within a distance of 10 – 

20 times of the height of the windbreak [McNaughton, 1989, Patton et al, 1998].   The 

effectiveness of a windbreak in creating a protected downwind zone is determined by 

factors including its height and porosity [Cleugh, 1998], upwind land cover, and 

topography.   

The potential for windbreaks to reduce pollen dispersal has received little 

attention.  Arritt et al. [2007] found that a vegetative border of a tall annual grass 

(sorghum-sudangrass hybrids) reduced pollen transport from a maize field. Ushiyama et 

al. [2010] evaluated fences as windbreaks in maize fields, but found little effect on pollen 

dispersal.  Although research has shown that pollen concentration decreases with distance 

from the source [Ecker et al, 2013, Chamecki and Meneveau, 2011, Okubo and Levin, 
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1989], there are no studies on the effect of typical farm windbreaks (one or more rows of 

cultivated trees or shrubs) or narrow forest stands on pollen dispersal.  In this paper, a 

barrier made from a narrow forest stand is called a forest windbreak. 

Understanding and managing pollen-mediated gene flow in switchgrass is important 

because it is a model crop for large-scale biofuels plantations and a GE crop with novel traits 

approved by the US government [Ecker et al, 2015, Ledford, 2013].  Switchgrass is a native 

grass across the Central and Eastern regions of North America with minimal domestication 

from its wild ancestors.  Its reproductive biology includes obligate out-crossing, self-

incompatibility, numerous panicles, and a long period of asynchronous pollen release 

[McNaughton, 1988, Casler, 2012].  Various ecological risks from GE switchgrass have 

been proposed including the emergence of switchgrass as a serious weed, the reduction or 

extinction of native switchgrass populations, the loss of natural genetic biodiversity and 

genetic resources, and negative impacts on non-target organisms [Barney and DiTomaso, 

2008, Kausch et al, 2010, Kwit and Stewart, 2012].   Additional concern exists because 

switchgrass is already a successful competitor outside of cultivation [Ecker et al, 2015, 

Kausch et al, 2010].   A study in the Northeastern US analyzed the genetics of 

switchgrass collected from road verges and the coastal zone where local populations are 

lowland tetraploids [Ecker et al, 2015].  Results showed that 67% of the roadside plants 

were upland octoploid plants that were probably introduced through human activity.  

Thus, mechanisms to reduce gene flow from biofuels plantations could help protect local 

plant communities [Barney and DiTomaso, 2008, Kausch et al, 2010, Kwit and Stewart, 

2012]. 

The purpose of this study was to: 1) characterize switchgrass flowering, pollen 
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release (anthesis), pollen dispersal, and pollen source strength; 2)  measure the effect of a 

forest windbreak on wind speed and direction; and 3) determine if a forest windbreak 

could reduce downwind switchgrass pollen dispersal beyond what would occur due to 

distance alone.   

 

2. Materials and Methods 

2.1 Field Plots in the Study 

 The project was conducted at two 40 m x 40 m field plots in Ecoregion Level IV 

number 59 (Northeastern Coastal Zone [Griffith, 2010]) (Fig. 1) planted with switchgrass 

in 2012 with observations made at plant maturity in 2013 and 2014. One field plot at 

41.792N, 72.223W was set in a second-growth forest (hereafter called “Forest”).  The second 

field plot was at 41.781N, 72.212W in agricultural land without windbreaks (hereafter called 

“Control”).  Soils were classified as sandy loams with low-to-medium organic-matter 

content with pH 5.8 – 6. 
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Figure 1. Location of field study (star) in the context of Level IV Ecoregions in the 

Northeastern United States.  Locations are shown for four major cities (Boston, Hartford, 

New York City, Providence) and borders for four states (Connecticut, Rhode Island, 

Massachusetts, New York). 

 

  

A botanical survey was conducted to characterize the second-growth forest 

windbreak. There were 197 trees with >4 cm diameter breast height, and the species 

included Fraxinus americana (50.7%), Acer rubrum (22%), Carya ovata (22%), Malus 

sp. (2%), Ostrya virginiana (1%), Quercus velutina (1%) and Sassafras albidum (0.5%). 

The forest understory contained a small number of shrub species including Ilex 

verticillata, Lindera benzoin, Rosa multiflora and Berberis thunbergii. Vines in the forest 

canopy included Celastrus orbiculatus, Parthenocissus quinquefolia, Toxicodendron 

radicans, and Vitis species.  
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The forest windbreak was mapped using a Leica Scan Station C10 terrestrial laser 

scanner (Leica Geosystems, San Francisco, California, USA). This instrument is a robotic 

total station that scans horizontally and vertically, collecting a xyz point every few 

centimeters including returns from the highest leaves so long as there is a direct line-of-

sight to the instrument. From these data we determined mean tree height to be 16.8 m.  

 

2.2 Establishment of Switchgrass Fields 

Two switchgrass cultivars were planted in alternating rows: ‘Blackwell’ (upland 

octoploid, Natural Resource Conservation Service, US Department of Agriculture, 

Salina, Kansas, USA) and ‘Cave-in-Rock’ (upland octoploid, Natural Resource 

Conservation Service, US Department of Agriculture, Elsberry, Missouri, USA).  In 

2012, switchgrass seedlings were grown for 8 weeks in Fafard® Nursery Potting Mix 

(Conrad Fafard Inc., Agawam, MA, USA), fertilized with 3 g of Nutricote® 18-6-8 (type 

180, Arysta LifeScience, Chuo-ku, Tokyo, Japan) and grown in a University of Connecticut 

greenhouse (mean temperature 26°C, range 19-38°C).   Seedlings were planted in mid-June 

in rows 1 m apart with 0.5 m between individuals.  Each row had 80 individuals for a total of 

3200 plants per plot. Plant survival during the first winter (2012-2013) was approximately 

98% for both fields and dead plants were replaced in June, 2013. Weeds were controlled by 

hand within rows and trimmed between rows. Both fields were fertilized in mid-April, 2013 

with 50 kg/ha of organic Milorganite® All Season Fertilizer (5-2-0) (Milorganite, WI, USA).   

Switchgrass plants were cut down after frost in mid-November in all years. 
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2.3 Switchgrass Development 

To understand switchgrass reproduction, 20 plants were randomly selected for each 

cultivar and plot location (40 plants/field, 80 plants total).  The timing of flower development 

and anthesis was determined based on weekly surveys in 2013 beginning prior to the 

emergence of flower panicles and continuing until all plants had finished flowering. One 

panicle from each plant was tagged and observed weekly during flowering to count the 

number of florets with exerted purple stigmas and yellow-orange anthers; these florets were 

designated as in the process of anthesis (releasing pollen).   All 80 individuals were 

harvested, dried and weighed for above-ground biomass in October, 2013.  Two panicles 

were collected from each individual and the number of florets was counted. The number of 

reproductive stems (with panicles) and vegetative shoots (without panicles) were counted.  

Analysis of Variance was used to test differences in above-ground biomass, number of 

reproductive shoots and number of florets/panicle. Tukey’s HSD was used to test for 

significant differences between cultivars and plots [R Core Team, 2013].  

 

2.5 Pollen Capture  

Switchgrass pollen were sampled in the air using rotorod boxes constructed by the 

authors. A rotorod box houses a DC motor attached to a rotating-arm impactor that has two 

narrow plastic impaction surfaces oriented vertically (rods) that spin in a circle [Muilenberg, 

2003]. The plastic rods (2.98 mm width x 2.54 cm length on leading side) sampled a volume 

of air ranging from 0.70 m
3
 – 0.76 m

3 
in 30 minutes depending on the angular velocity of 

each rotorod box (velocities varied from 2900 – 3170 rpm). The leading side of the rods was 

given a thin coating of silicone grease, and rods were replaced every 30 minutes. After 
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exposure, the rods were transported to the lab where the number of pollen were counted 

under an Olympus SZH10 microscope (Olympus, PA, USA) along a 1-cm length at the 

center of each rod. The rotorods were digitally photographed and the images stitched together 

using the software ImageJ 1.47v [Rasband, 2014] and counted using SemAfore 5.21 (JEOL 

(Skandinaviska) AB, Sollentuna, Sweden).   Pollen counts were converted into number of 

pollen/m
3
/30 minutes with an adjustment for the speed of each individual rotorod box where 

the m
3
 refers to the volume of air sampled.  Eight case study days with wind and pollen data 

were analyzed with three days from the Control site (Aug. 21, 2013 and Aug. 19 and 29, 

2014) and five from the Forest site (Aug 31, 2013 and Aug. 14, 20, 25, 26, 2014).   

Estimates of pollen source strength (PSS) were based on the number of 

pollen/anther, anthers/floret, florets/panicle, reproductive stems/plant, and the field density 

(number of individuals/area).  To determine the number of pollen per anther, one switchgrass 

floret from a ‘Cave-in-Rock’ plant was collected and placed in Clarke’s fixative solution 

(25% acetic acid to 75% ethanol).  The mature flower bud was dissected and each anther was 

placed in 15 µL Calberla’s staining solution and 15 µL glycerol and dissected to release 

pollen. The pollen suspension was then placed in a Fuchs-Rosenthal haemocytometer and 

photographed in an Olympus BH2-RFCA microscope (Olympus, PA, USA).  Pollen counts 

were made twice for each anther using the program SemAfore 5.21 (JEOL (Skandinaviska) 

AB, Sollentuna, Sweden). 

Pollen production (P) for an individual plant was calculated with the formula 

𝑃 = 3 × 𝑝 × 𝑓 × 𝑔,         (1) 

where there were three anthers per florets, p is the mean number of reproductive stems 

with panicles per plant, 𝑓is the mean number of florets per panicle, and g is the mean 
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number of pollen per anther. The standard deviation of P was calculated using 

propagation of variance [Ghilani, 2010] as 

𝜎𝑃 =  √(𝑝𝑔)2𝜎𝑓  
2 +  (𝑓𝑔)2𝜎𝑝  

2 + (𝑝𝑓)2𝜎𝑔  
2      (2) 

The maximum number of airborne pollen throughout the flowering period was 

estimated by multiplying the value P by the number of plants in the experimental plot or the 

number of plants/area (density) in a commercial field. 

 

2.4 Wind Dynamics 

Sonic anemometers (Ultrasonic 81000, RM Young, Michigan, USA) were deployed 

as shown in Figure 2 to characterize the wind fields. Three 3-m towers were erected at the 

Forest plot (denoted by first letter F) and the Control plot (denoted by first letter C).  Each 

tower supported a sonic anemometer at the top of a 3-m metal pole with a rotorod box 

mounted at 2-m height. At each plot, one tower was erected in the middle of the switchgrass 

field (denoted by second letter S), one was 99.8 m from the middle of the switchgrass field 

(denoted by second letter D1), and one was 133.7 m from the middle of the switchgrass field 

(denoted by second letter D2).  Thus, the six towers were named FS, FD1, FD2, CS, CD1, and 

CD2. The distances for D1 and D2 were chosen according to the mean forest canopy height of 

the Forest windbreak.  Downwind distances were D1 = 1 × mean tree canopy height 

(16.76 m) and D2 = 3 × height (50.3 m). Thus, D1 = 16.8 m and D2 = 50.3 m from the 

downwind edge of the forest windbreak. To measure pollen dispersal within and above the 

forest windbreak, a 23.8 m walkup tower (denoted by W) was erected inside the forest 19.5 

meters from the middle of the switchgrass field and in line with the 3-m towers (Figs. 2, 3).  

The top of the tower extended above the tree canopy by about 2 meters.  Sonic anemometers 
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and rotorod boxes were placed on the walkup tower at 1.8 meters (W1.8) and the top of the 

tower (W23.8). W23.8 was directly above W1.8, so they appear as W in Figure 2.  A third 

sonic was mounted at 12.8 meters on the walkup tower (W12.8), but pollen was not 

collected at this height.  

 

Figure 2. Aerial photographs of  switchgrass field plots.  The Forest plot (left) shows a 

square representing the 40 m x 40 m Forest switchgrass field (FS), a polygon 

representing the forest windbreak,  the location of the Walkup tower in the forest (W), 

and two downwind data collection towers (FD1, FD2).  The Control plot (right) shows a 

square representing the 40 m
 
x 40 m Control Source field (CS) and two downwind data 

collection towers (CD1, CD2). 
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Figure 3. Photographs of the walkup research tower (Left) extending through the forest 

windbreak canopy and the switchgrass Forest Source field (Right) as seen from the 

walkup tower. 

 

 

The sonic anemometers measured three-dimensional wind-velocity fields (m/s) and 

temperature (C) at 10 Hz, and were oriented with their fiducial axis aligned to the north. 

The two horizontal components were denoted as +u for wind blowing to the north, +v for 

wind blowing to the east, and +w for the vertical component blowing upwards (Fig. 4).  

Data were collected on netbook computers (Acer Aspire One D270, Acer America, CA, 

USA). The netbooks ran the Ubuntu ™ 12.04 LTS Linux ™ operating system and sonic data 

were collected with PuTTY ©, a free and open source serial console and file transfer 

application (http://www.chiark.greenend.org.uk/~sgtatham/putty/). 

 

http://www.chiark.greenend.org.uk/~sgtatham/putty/
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Figure 4. Sample of wind data collected by a sonic anemometer showing northwards 

wind velocity component u (m/s) in the control field on August 21, 2014. Left panel: 

Observed wind u component. Right panel: Mean speed �̅�. (c) Turbulence 𝑢′ = 𝑢 −  �̅�. 

Data were subsampled by 1 in 100 to reduce clutter in the image. 

 

 

3. Results 

3.1 Switchgrass Anthesis 

 Switchgrass panicles were first observed emerging from stems on July 2, 2013 

and July 11, 2014.  Panicle emergence in ‘Blackwell’ (B) was slightly delayed relative to 

‘Cave-in-Rock’ (CIR) in both plots. Observation of 80 randomly selected plants in 2013 

showed that the pattern of anthesis was similar among cultivars and plots and occurred 

over approximately 44 days (Fig. 5).  The number of florets in anthesis/panicle was not 

statistically different among cultivars and plots except on Aug. 15 and Sept. 4, 2013, but 

no cultivar or plot had consistently higher values on those dates.   With few exceptions, 

there were no significant differences among cultivars and plots for above-ground biomass 

(477.2 grams dry weight ± 284.2 SD), number of florets/panicle (705.9 ± 284.2 SD), and 

number of flowering stem/individual plant (75.8 ± 33.8 SD).  However, the biomass for 

CIR plants in the Control plot (770 g ± 285.5g) was higher than for B plants in the Forest 



 

15 
 

plot (270.5 g ± 157 g) and Control CIR had a slightly higher number of flowering stems 

than Forest CIR, Forest B or Forest CIR.  

 

Figure 5. Mean number of switchgrass florets in anthesis per panicle during the flowering 

period (2013).  Cultivars ‘Cave-in-rock’ (CIR) and ‘Blackwell’ (B) in Forest and Control 

plots. Twenty panicles were observed for each plot and cultivar combination (n = 20). 

 

 

The pattern of switchgrass pollen release during the day was determined by 

collecting pollen on rotorods in the center of the switchgrass fields above the panicles on 

eight different days (Fig. 6).  Pollen were first observed on rotorods at 11:00 with a broad 

peak in pollen concentrations at 11:30-13:30 followed by a decrease to lower levels by 

15:00.   
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Figure 6.  Pattern of switchgrass pollen collection during the day.  Normalized mean 

percent values were based on the number of pollen captured in each 30 min period 

(pollen/m
3
/30 minutes) divided by the total number of pollen captured in that day by 

rotorod boxes at the center of the source fields.  The normalized percent values and 

standard error are shown for 30 min intervals from 10:00 – 15:00 (n = 8 case study days). 

For example, about 20% of the pollen collected for the day was captured from 13:00 – 

13:30. 

 

 

 

3.2 Pollen Source Strength 

 The first step in estimating pollen source strength (PSS) for the switchgrass fields 

was to determine the mean pollen production/switchgrass plant over the growing season.  

This was estimated using values for the mean number of florets per panicle 

(f = 706 ± 284), the mean number of panicles per plant (p = 76 ± 34), and the mean 
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number of pollen per anther (g = 5500 ± 839; min = 4504, max = 6771). Using Eq.s 1 and 

2, the estimated maximum number of pollen emitted per plant per growing season 

was 8.85 × 108 ± 1.83 × 108. Using this information, three values for PSS were 

developed: 1) PSS for 3200 plants in the experimental field plots, 2) PSS for switchgrass 

fields planted at commercial densities, and 3) an adjusted PSS based on pollen capture 

data. With 3200 plants per plot, we estimate that our field plots produced 2.83 × 1012 ±

1.04 × 1010 pollen per season per plot. Assuming commercial planting density is one 

plant per square foot [USDA NRCS, 2009] a commercial biofuels plantation would be 

approximately four times denser than our plots and a hectare is 6.25 times larger, so the 

estimate for total maximum source strength was 7.08 × 1013 ± 5.18 × 1010 pollen per 

season per hectare at commercial densities. However, the airborne PSS under natural 

conditions would generally be less than this because not all the pollen in the anthers is 

released, some pollen falls directly to the ground, some florets or anthers are damaged, 

and pollen number could vary due to genetic or environmental factors [Cruden, 2000]. 

Therefore, these values are an upper bound based on the cultivars and environment in this 

study. 

Dividing the maximum source strength estimate for our plot by 6 weeks/season 

and 7 days/week gives 6.75 × 1010 ± 1.60 × 109 pollen per day for the plot. The 40 m x 

40 m plot in square centimeters is 1.6 × 107 cm
2
 and a rotorod box occupies 42.25 cm

2
, 

so the entire field would hold a theoretical maximum of 378,698 rotorod boxes. Dividing 

7.29 × 1010 pollen per day for the plot by 378,698 rotorod boxes suggests that each 

rotorod box would collect 178,119 pollen per day. In fact, the mean pollen number 

collected in the source field was 16,881 pollen in a day (min=5650, max=29083). 
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Because pollen collection occurred between 10:00-15:00, it is possible that some pollen 

was released outside this time frame and other factors could reduce pollen cloud density 

(see above). Nonetheless, the maximum estimate is 11 times larger than the observed 

mean. Taking this into account, a more realistic peak release estimate from a commercial 

field is 6.75 × 109 pollen/day/hectare when planted at commercial densities.  

Taking 6.75 × 109 pollen/day/hectare as the maximum release in a single day, we 

estimated the pollen/day/hectare on days other than the peak release. Table 1 gives the 

percent-of-maximum observed on the other observation days. The maximum occurred on 

08/21 as indicated by observed percent of maximum equal to 100%. Pollen release on 

unobserved days was estimated by linear interpolation (Fig. 7). Summing the observed 

and interpolated values
1
 produces our estimated pollen source strength for the whole 

growing season: 141 × 109 pollen/season/hectare. To our knowledge, this is the first 

estimate of switchgrass PSS in the literature.   

 

Table 1. Observation dates and observed percent-of-maximum pollen released per day. 

07/16 07/23 07/30 08/06 08/15 08/21 08/28 09/04 09/11 09/18 

0% 0% 18% 42% 66% 100% 47% 18% 4% 0% 
 

 

  

                                                        
1 Summation, not numerical integration, is correct here because the pollen was released during the 
daytime only, not continuously. In fact, numerical integration (trapezoidal method) produces a PSS 
estimate of 161 × 109, an overestimate of 20 × 109. 
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Figure 7. Estimation of the number of switchgrass pollen released over the growing 

season based on the observed number of florets in anthesis/panicle and an estimate of 

total pollen source strength for the switchgrass field (3200 plants). 

 

 

3.3 Effect of the Forest Windbreak on Pollen Dispersal 

 Data from eight case-study days (2013-2014) are presented to understand the 

effects of the forest windbreak on pollen dispersal (Table 2).  Most of the case-study days 

occurred when the principle wind direction was from the pollen source fields towards the 

towers with rotorod boxes and sonic anemometers (called “downwind”). One case study 

(August 14, 2014) at the Forest plot was conducted with the opposite trend in wind 

direction.  Table 2 summarizes the observed pollen concentrations at each rotorod box 

(observed pollen numbers for the day together with those values normalized with the 

center of the field), wind speed, and wind direction. Pollen concentrations were always 

highest in the center of the source field compared to all other collection points.  At both 
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plots, pollen concentrations at Downwind 2 (D2) were lower than at Downwind 1 (D1) 

with the exception of August 31, 2014 when the values were nearly equal (14 pollen and 

18 pollen). 

 

Table 2. Switchgrass pollen concentrations and wind data for eight case study days. 

Pollen concentrations (pollen/m
3
/5 hr from 10:00-15:00) are shown for each rotorod 

location with both observed values and normalized values. Wind data is shown as speed 

(m/s) and direction (degrees from North azimuth).  Wind speeds for the Forest plot are 

shown at the center of source field and (/) top of walkup tower.  Wind speeds for the 

Control plot are shown for the center of the source field.   

 

 

Pollen concentrations at the Control plot consistently decreased with distance 

from the center of the switchgrass field: there was a 58-77 fold decrease in pollen 

concentrations from the center of the source field to CD1 (99.8 m from field center) and 

Plot Name Case Study Date

Center 

Source  

Field

Top 

tower

Bottom 

tower
Downwind 1 Downwind 2

Forest plot August 14 2014 5650 42 44 6 3 0.88/2.04 0/0 5.35/9.33 -17

Forest plot August 20 2014 8135 426 282 23 13 0.63/1.06 0/0 2.62/4.09 -4

Forest plot August 25 2014 19632 34 105 1 0 0.71/1.76 0/0 4.20/6.16 2

Forest plot August 26 2014 23642 991 210 24 10 0.66/1.01 0/0 3.15/5.53 -27

Forest plot August 31 2013 9216 165 26 14 18 0.62/2.20 0/0 3.60/7.25 -23

Control plot August 19 2014 29083 405 141 1.1 0 5.51 -6

Control plot August 29 2014 15141 254 24 1.17 0 5.45 12

Control plot August 21 2013 20370 261 104 1.4 0 5.46 -29

Plot Name Case Study Date

Center 

Source  

Field

Top 

tower

Bottom 

tower
Downwind 1 Downwind 2

Forest plot August 14 2014 100.0 0.743 0.779 0.106 0.053 0.88/2.04 0/0 5.35/9.33 -17

Forest plot August 20 2014 100.0 5.237 3.467 0.283 0.160 0.63/1.06 0/0 2.62/4.09 -4

Forest plot August 25 2014 100.0 0.173 0.535 0.005 0.000 0.71/1.76 0/0 4.20/6.16 2

Forest plot August 26 2014 100.0 4.193 0.887 0.102 0.042 0.66/1.01 0/0 3.15/5.53 -27

Forest plot August 31 2013 100.0 1.795 0.286 0.150 0.194 0.62/2.20 0/0 3.60/7.25 -23

Control plot August 19 2014 100.0 1.393 0.485 1.1 0 5.51 -6

Control plot August 29 2014 100.0 1.678 0.159 1.17 0 5.45 12

Control plot August 21 2013 100.0 1.282 0.520 1.4 0 5.46 -29

Pollen Concentration (pollen/ m3 / 5 hr)

Mean wind 

speed 

Minimum 

wind speed

Maximum 

wind speed

Mean Wind 

direction

Normalized Pollen Concentration

Mean wind 

speed 

Minimum 

wind speed

Maximum 

wind speed

Mean Wind 

direction



 

21 
 

200-1000 fold decrease at CD2 (133.7 m from field center).  These reductions are 

explained by distance alone because the control site had no barriers between the source 

field and the downwind sampling towers. The Forest windbreak plot consistently 

decreased the downwind pollen concentrations far more than what was observed at the 

Control plot.  Pollen concentrations at FD1 (beyond the Forest windbreak) decreased by 

333-20,000 fold, and pollen concentrations at FD2 decreased 500-2500 fold.  No 

switchgrass pollen was detected at FD2 on one case study day (Aug 25, 2014).  Pollen 

concentrations were also measured at two positions on the forest Walkup tower.  Pollen 

concentrations above the forest tree canopy (W23.8) were 19 - 500 fold less than the center 

of the switchgrass field, and at the bottom of the Walkup tower (W1.8) they were 29 – 333 

fold less than the center of the switchgrass field.  However, the ratio of pollen at the top 

(W23.8) and bottom (W1.8) rotorod boxes varied between days.  Overall, it is clear that 

downwind pollen concentrations (CD1, CD2) were always higher at the Control plot.   

Results for two days (Figure 8) were chosen for comparison because both fields 

had comparable pollen source strength: 23,642 pollen/m
3
/5 hr at the Forest plot and 

29,083 pollen/m
3
/5 hr at the Control plot.  The pollen collector beyond the forest 

windbreak (FD2) had no detectable pollen (0%) compared to 0.5% at the same distance in 

the Control site (CD2); similar differences were observed at FD1 and CD1. 
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Figure 8. Two aerial photographs showing reduction in pollen concentrations downwind 

from the source fields.  The left photo shows normalized pollen concentrations at the 

Forest plot.  The pollen collector at the top of the walk-up tower (W23.8) above the forest 

canopy is labeled ‘TOP’ and the collector at the bottom of the  tower (W1.8) is labeled 

‘BOTTOM’. .  The right photo shows pollen concentrations at the Control plot.  

 

 

3.4 Micrometeorology 

 Wind direction is an important factor in pollen dispersion [Clark et al, 

2005, Hoyle and Cresswell, 2007, Okubo and Levin, 1989, Augspurger and Franson, 

1987]. Wind roses were computed from the anemometer observations for every 30 

minute pollen sampling period, and some “typical” exemplars are shown. The sector gray 
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tones reflect mean wind velocity towards that direction for that half hour, with darker 

colors indicative of higher wind speeds relative to 3 m/s. The length of a sector is in 

proportion to the number of samples blowing that direction, so the wind rose gives the 

same information as a frequency plot (histogram).   Figure 9 shows wind roses for 10:00-

10:30 at the Control plot on August 29, 2014. The wind fields at the three sonic 

anemometers are very similar in direction and speed. They are well organized and 

consistent. The downwind sensors recorded higher average wind speeds than the sensor 

in the middle of the field, which is reasonable because the vegetation around the field 

sensor slows the wind somewhat.  

 

Figure 9. Typical wind fields in the Control plot. The wind roses shown are for 10:00-

10:30 at the Control plot on August 29, 2014. Left to right is the CS, CD1, and CD2. 

Compass directions indicate the direction the wind was blowing towards. Solid black 

indicates a mean wind speed of 3 m/s. 

 

 

Figure 10 shows examples of wind roses collected at the Forest plot from 13:30-

14:00 on August 20, 2014. The top row shows (left to right) the FS, FW1.8, and FW12.8 

(middle of the walkup tower). The bottom row shows (left to right) FW23.8, FD1, and FD2. 
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Compared to the Control plot, the wind is generally lower speed and disorganized, 

although the anemometer at the top of the walkup tower, which is above the canopy, 

mostly shows large eddies rolling by along the NW-SE direction, plus a brief gust to the 

North. The wind in the source field was almost completely random in direction. The two 

sonic anemometers in the forest (W1.8 and W12.8) recorded the lowest wind speeds, which 

is due to the forest canopy creating turbulence that dissipates the flow’s kinetic energy. 

 

Figure 10. Typical wind fields in the Forest plot.  Wind roses are shown for the Forest 

plot from 13:30-14:00 on August 20, 2014. The top row shows (left to right) the FS, 

FW1.8, and FW12.8 (middle of the walkup tower). The bottom row shows (left to right) 

FW23.8, FD1, and FD2. Compass directions indicate the direction the wind was blowing 

towards. Solid black indicates a mean wind speed of 3 m/s. 
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4. Discussion 

 Pollen source strength (PSS) is one of the most important factors in pollen-

mediated gene flow, and our estimate for switchgrass PSS is the first in the literature.  

The theoretical maximum value for switchgrass PSS in our field plots was based on the 

number of pollen/anther and other quantified morphological traits, so the value 2.83 ×

1012 must be considered an upper bound that would probably not be realized due to 

biotic factors (e.g. herbivory) and abiotic factors (e.g. wind conditions, humidity, or rain). 

In fact, pollen capture methods in this study showed that approximately 1/11
th

 of the 

theoretical maximum was advected above the switchgrass panicles.  Previous PSS studies 

have mainly focused on maize pollen [Jia et al, 2007, Augspurger and Franson, 1987, 

Timerman et al, 2014, Sofiev and Bergmann, 2012, Arritt et al, 2007, Jarosz et al, 2005, 

Jarosz et al, 2003, Aylor, 2003].  Switchgrass (5500 pollen/anther) had about twice as 

many pollen/anther compared to maize (2000-2500 pollen/anther) [Sturtevant, 1881, 

Goss, 1968, Wallace and Bressman, 1949].  A study in Spain measured pollen/anther in a 

variety of grass species [Prieto-Baena et al, 2003].  The 5500 pollen/anther observed in 

switchgrass was higher than the reported values for 32 grass species in the study, but 

similar to two grasses (Cynosurus echinatus, 6745; Elymus repens, 5410), and less than 

four grass species (Arrhenatherum album, 12,045; Festuca arundinacea, 8941; Lolium 

rigidum, 10,453; Sorghum halpense, 7140).  Although many factors are involved in 

pollen-mediated gene flow, the PSS value suggests that the likelihood of gene flow from 

switchgrass fields exceeds most other grasses studied.   

Our central hypothesis about the ability of a narrow forest windbreak to mitigate 

downwind pollen dispersal was strongly supported by the case studies.  However, the 
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data do not provide direct information about the three-dimensional paths taken by the 

wind-blown pollen or how much pollen was captured by surfaces in the forest (e.g. 

leaves, stems, branches).  Additional field work and the development of computational 

fluid dynamics models are needed to understand the advection and dispersal of pollen. 

Ultimately, it should be possible to optimize windbreak design (e.g. tree species, tree 

spacing) to create practical, low-cost barriers that will reduce pollen-mediated gene flow 

while promoting coexistence and ecosystem services.  
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