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C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060

(Dated: August 4, 2006)

I. SYNOPSIS

When studying polyatomic rotations, one needs a
description of rotation which employs independent
coördinates, hence this discussion.

II. THE EULERIAN ANGLES

There is no question that once we leave diatomic
molecules, life gets difficult. Most chemistry concerns
polyatomics, so sticking with diatomics is possibly exces-
sively pedantic. Be that as it may, we need to discuss
rotational aspects of polyatomic species.

To begin the study of polyatomic molecules we need to
define rotations in three dimensions in a manner which
is rigorous. We seek three independent angles, coordi-
nates in a sense, which will suffice to allow us to write
the Hamiltonian for the rotation in a clear, unambiguous,
manner. Our Eulerian angles are not taken from Gold-
stein (which used to be the gold, no pun intended, stan-
dard in this field) [1] Instead, we now shift to a more cur-
rent standard, which is exemplified by Zare [2] We need
three angles, three rotations, which will unambiguously
allow us to rotate a coordinate system from a starting to
a final configuration. The order of operation will be pre-
scribed, and remain inviolate. We start with the familiar
polar angle from spherical polar coordinates, ϕ, which
we take over completely as the first Euler angle. We ro-
tate from the coordinate system xspace, yspace, zspace to
{xN , yN , zN} where zN is colinear with zspace, since this
first rotation is a rotation about the original z-axis. (The
new y-axis is called the “line of nodes”, hence the sub-
script ‘N’.) Again, from spherical polar coordinates, we
take the positive direction as x→ y.

Next, from the {xN , yN , zN} system, we rotate about
the yN -axis counterclockwise by an angle which we will
call ϑ. This second rotation leads us from {xN , yN , zN}
to {xr, yr, zr}.

Finally, we rotate about the (new) zu axis, again coun-
terclockwise, to go from {xr, yr, zr} to {xf , yf , zf} where
the subscript f stands for final. This last angle is called
χ.

It is clear that we have for the first rotation xN
yN
zN

 =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

⊗

 xspace
yspace
zspace

 (2.1)

and for the second rotation about the newly created “y”
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FIG. 1: First Rotation in the Euler Scheme

axis, which is now called the line of nodes, xu
yu
zu

 =

 cosϑ 0 − sinϑ
0 1 0

sinϑ 0 cosϑ

⊗

 xN
yN
zN

 (2.2)

and finally, once again about a z-axis, but this time the
new one, xf

yf
zf

 =

 cosχ sinχ 0
− sinχ cosχ 0

0 0 1

⊗

 xu
yu
zu

 (2.3)

The final coordinates are called the body coordinates,
compared to the original set, which is referred to as the
space coordinates (or lab coordinates).

The product of these three rotations, in the proper (in-
variable) order, will locate the body coordinates. Thus,
the body coordinates are connected to the space coordi-
nates through the transformation:
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FIG. 2: Second Rotation in the Euler Scheme (showing the
axis of rotation, n̂ϑ
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FIG. 3: Third Rotation in the Euler Scheme (showing the
axis of rotation, n̂χ

 cosχ sinχ 0
− sinχ cosχ 0

0 0 1

⊗

 cosϑ 0 sinϑ
0 1 0

− sinϑ 0 cosϑ

⊗

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 (2.4)
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We take these composite rotation matrix multiplica-
tions in order, i.e., first the ϕ rotation, then the ϑ rota-
tion yielding cosϑ 0 − sinϑ

0 1 0
sinϑ 0 cosϑ

⊗

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 (2.5)

which yields cosϑ cosϕ cosϑ sinϕ − sinϑ
− sinϕ cosϕ 0

sinϑ cosϕ sinϑ sinϕ cosϑ



and finally, including the χ rotation, we have

 cosχ sinχ 0
− sinχ cosχ 0

0 0 1

⊗

 cosϑ cosϕ cosϑ sinϕ − sinϑ
− sinϕ cosϕ 0

sinϑ cosϕ sinϑ sinϕ cosϑ



We finally arrive at the overall transformation

 cosχ cosϑ cosϕ− sinϕ sinχ cosχ cosϑ sinϕ+ cosϕ sinχ − cosχ sinϑ
− sinχ cosϑ cosϕ− sinϕ cosχ − sinχ cosϑ sinϕ+ cosϕ cosχ sinχ sinϑ

sinϑ cosϕ sinϑ sinϕ cosϑ

 (2.6)

The angle ϕ is the exact same angle as that used in
spherical polar coördinates, i.e., is familiar. ϑ measures
the tilt down from the original z-axis, and is also familiar
from spherical polar coördinates. The new angle, χ, is
uncommon.

III.

We have derived the transformation which takes the
space coördinates into the body coördinates, i.e.,

~xbody = Φspace→body~xspace

where Φ is a 3x3 matrix (above). Φ(ϕ, ϑ, χ) is a function
of the three Euler angles. As noted above, this overall
transformation is a compound of three different rotations,
R(ϕ), R(ϑ), R(χ), in reverse order, i.e.,

Φ = R(χ)⊗R(ϑ)⊗R(ϕ)

As usual, these are written from right to left, i.e., we do
R(ϕ) first, then R(ϑ), and finally R(χ).

There must be an inverse transformation which takes
the body coördinates back into the space coördinates,
i.e., Φ−1. This must have the form

Φ−1 = R−1(ϕ)⊗R−1(ϑ)⊗R−1(χ)

As with all rotations in three dimensions, the result of
doing and then undoing must be the unit operation, i.e.,
no operation at all. Thus

Φ−1 ⊗ Φ = 1

IV. INFINITESIMAL ROTATIONS IN QM

Consider a system described by a set of eigenfunctions
|i >, such that

|i >′= Uop|i >

where |i >′ is a new set of basis functions. We then have

< i|i >′=< i|U†opUop|i >

where the superscript dagger implies transpose complex
conjugate. This last equation is the same as the radius
preserving rotation in space, the lengths and angles be-
tween the unprimed and the primed system are main-
tained during the linear transformation Uop, if U†op =
U−1
op = I.
The matrix representative of an operator will change

upon this kind of transformation. Consider the operator
Qop so that

< i|Qop|j >→ Qi,j

and

< i|U†opUopQopU†opUop|j >=< i|UopQopU†op|j >′= Q′i,j

This means that the operator has been transformed, i.e.,

Q′op = UopQopU
†
op = Q′op = UopQopU

−1
op

If the transformation Uop (a unitary transformation)
can be written as

Uop = Iop + ıεRop

where Rop is going to be an infinitesimal rotation opera-
tor, then two such transformations, compounded, would
have the form

U2
op =

(
Iop + ı

ε

2
Rop

)2
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i.e., if we did each of these for ε/2 the net would be as if
we did the original for ε, i.e.,

U2
op =

(
Iop + ı

ε

2
Rop

)2

= Uop

If we did this over and over again, using smaller and
smaller increments then we would eventually have

Uop = lim
n→∞

(
Iop + ı

ε

n
Rop

)n
(4.1)

This is a fancy way of writing

Uop = e(ıεRop) (4.2)

which can be verified by taking the Taylor expansion of
this exponential form (Equation 4.2) and identifying each
term as being present in the product’s expansion (Equa-
tion 4.1).

V. FINITE VS. INFINITESIMAL ROTATIONS

One can now associate a vector with a finite rota-
tion represented by an orthogonal (radius preserving)
transformation. The direction would be the axis of ro-
tation, and the magnitude would be the angle of rota-
tion, or something related to it. But, since the rota-
tions, in three dimensions, were not commutative, i.e.,
Rot1 ⊗ Rot2 6= Rot2 ⊗ Rot1, neither Rot1 nor Rot2 can
be “true” vectors. On the other hand, for infinitesimal
rotations, this association of a rotation with a vector is
perfectly plausible.

VI.

Consider the finite rotation about the z-axis

Rz =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1


when ϕ is infinitesimal, i.e., close to zero. Then the cosine
is approximately 1, and if the infinitesimal angle is δϕ
then one has

Rz =

 1 δϕ 0
−δϕ 1 0

0 0 1


Consider Rz(ϕ) as rotating about the z-axis from ϕ0

to ϕ0 +ϕ i.e., which means that the effect of the rotation
would be to substitute the value at ϕ0 − ϕ for the new
value ϕnew, i.e.,

Rz(ϕ)|ϕ0 >= |ϕnew >= |ϕ0 − ϕ >

in the space coördinate system. Then

|ϕnew >= |ϕ0 > +
(
∂|ϕ >
∂ϕ

)
ϕ=ϕ0

ϕ+ · · ·

g(  )φ

φ
δφ

Rg(  ) = g(   −      )φ δφφφRg(   )

FIG. 4: R(g) →? Here, we have that Rg(ϕ) picks up an
“earlier” or “older” value of g

which could be written as

|ϕnew >=
(

1− ϕ

n

∂

∂ϕ

)n
so

|ϕ0 − ϕ >= |ϕnew >=
(
e−ϕ

∂
∂ϕ

)
|ϕ0 >

and we then write

Rz(ϕ) = e−ϕ
∂

∂ϕ

and remember that Lz = −ıh̄ ∂
∂ϕ and we choose a reduced

coördinate scheme where h̄ = 1:

Rz(ϕ) = e−ıϕLz

VII.

Let ψ = ψ(x, y, z), and let Rz(δα) mean that ψ(x, y, z)
becomes ψ(x + yδα, y − xδα, z) which is the meaning
of rotating about the z-axis be δα. Expanding ψ(x +
yδα, y − xδα, z) in a Taylor series, we have
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ψ(x, y, z)|after rotation = ψ(x+ yδα, y − xδα, z) = ψ(x, y, z) + y
∂ψ(x, y, z)

∂x
δα− x

∂ψ(x, y, z)
∂y

δα+ · · ·

δψ(x, y, z)
δα

= +y
∂ψ(x, y, z)

∂x
− x

∂ψ(x, y, z)
∂y

(remember,

ψ(x+ yδα, y − xδα, z) =
[
1 + δα

(
y
∂

∂x
− x

∂

∂y

)]
ψ(x, y, z) + · · ·

this alternate interpretation).

ψ(x+ yδα, y − xδα, z) =
[
1− δα

(
x
∂

∂y
− y

∂

∂x

)]
ψ(x, y, z)

Since

Lz = −ıh̄
(
x
∂

∂y
− y

∂

∂x

)
we would have

∂

∂α
=
L
ı

For an infinitesimal rotation, we have (again, having
h̄ = 1)

Rz = 1 +
Lz
ı
δα

and if α = n
(
α
n

)
then and δα = α

n then in the limit, n
goes to infinity we have

Rz =
(
1 +

Lz
ı

α

n

)n
which is

eα
Lz
ı = e−ıαLz

If we use an axis other than the z-axis, then we need
to define a vector whose direction is that axis. Call that
vector n̂, then for a general rotation

Rn(α) = e−ıα
~L·n̂

VIII. ANOTHER DERIVATION OF RESULT
∂

∂α
= L

ı

From the polar coördinate definitions, we have(
1 +

sin2 ϕ

cos2 ϕ

)
dϕ =

dy

x
− y

x2
dx

or (
1

cos2 ϕ

)
dϕ =

dy

x
− y

x2
dx

which leads to (
∂ϕ

∂y

)
x

= cosϕ (8.1)

and (
∂ϕ

∂x

)
y

= − sinϕ (8.2)

so

x
∂

∂y
= cos2 ϕ

∂

∂ϕ

and

y
∂

∂x
= − sin2 ϕ

∂

∂ϕ

which leads to

~L · k̂ = −ı ∂
∂ϕ

in our case, and in general

~L · n̂ = −ı ∂
∂α

where n̂ is the unit axis around which the rotation is tak-
ing place. If the system is invariant under this rotation
about this axis, then the component of angular momen-
tum Ln is a constant of the motion.

For our three dimensional problem, in Euler angles, we
have

~L · n̂ϕ = −ı ∂
∂ϕ
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~L · n̂ϑ = −ı ∂
∂ϑ

~L · n̂χ = −ı ∂
∂χ

IX. EULER ANGLE REPRESENTATION

The Euler Angle rotations can be represented as

R(ϕ, ϑ, χ) = e−ıχ
~L·n̂χe−ıϑ

~L·n̂ϑe−ıϕ
~L·n̂ϕ

where this form has been chosen to represent the rota-
tion of the physical system, rather than the coördinate
system. This rotation is equivalent to first a rotation of
χ about the original z-axis, then a rotation of ϑ about
the new Y-axis, and then finally a rotation of ϕ about
the new z-axis.

We are using the Euler angle representation which em-
ploys three unit vectors n̂ϕ, n̂ϑ and n̂χ associated with the
three Euler angles. We need to express these in terms of
the Cartesian unit vectors in the space system, î, ĵ, and
k̂. We know that

n̂ϕ = k̂

since the first rotation is about the original (space) z-axis.
This means that

−ı ∂
∂ϕ

= Lz

The new y-axis after the first (ϕ) rotation, is -sinϕî+
cosϕĵ, as seen in Figure IX. Thus

nϑ^

mixes with z axis
under next rotation
(   )ϑ

cosϕ

sin ϕ y

ϕ

cos ϕ

−sin ϕ

yN

Nxx

FIG. 5: The ϕ rotation changes the axis of rotation for the
second (ϑ) rotation.

n̂ϑ = − sinϕî+ cosϕĵ

After the first (ϕ) rotation, the x-axis is transformed
into cosϕî+sinϕĵ which is now itself rotated in the sec-
ond (ϑ) rotation into sinϑ

(
cosϕî+ sinϕĵ

)
so

Nx

Nznχ

sin ϑ

sin ϑ

cos

cos ϑ

ϑ ϑ

ϑ

FIG. 6: The ϑ rotation changes the axis of rotation for the
third (χ) rotation.

n̂χ = sinϑ
(
cosϕî+ sinϕĵ

)
+ k̂ cosϑ

which means that

−ı ∂
∂ϕ

= Lz (9.1)

−ı ∂
∂ϑ

= − sinϕLx + cosϕLy (9.2)

−ı ∂
∂χ

= sinϑ cosϕLx + sinϑ sinϕLy + cosϑLz (9.3)

From these equations, we can solve for the components
of angular momentum directly, i.e.,

Lz = −ı ∂
∂ϕ

multiplying Equation 9.2 through by sinϕ we get

−ı sinϕ ∂

∂ϑ
= − sin2 ϕLx + sinϕ cosϕLy

multiplying Equation 9.3 through by − cosϕ we obtain

+ı
cosϕ
sinϑ

∂

∂χ
= − cos2 ϕLx − cosϕ sinϕLy + cosϕ cotϑLz

and adding, yields

−ı sinϕ ∂

∂ϑ
+ ı

cosϕ
sinϑ

∂

∂χ
= −Lx + ı cosϕ cotϑ

∂

∂ϕ

or

Lx = +ı sinϕ
∂

∂ϑ
− ı cosϕ

(
1

sinϑ
∂

∂χ
− cotϑ

∂

∂ϕ

)

or, in “final” form

Lx = ı

(
sinϕ

∂

∂ϑ
− cosϕ

(
1

sinϑ
∂

∂χ
− cotϑ

∂

∂ϕ

))

From Equation 9.2 we now obtain
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− cosϕLy − ı
∂

∂ϑ
= − sinϕ

(
+ı sinϕ

∂

∂ϑ
− ı cosϕ

(
1

sinϑ
∂

∂χ
− cotϑ

∂

∂ϕ

))
or

−Ly = ı
1

cosϕ
∂

∂ϑ
− sinϕ

cosϕ
ı sinϕ

∂

∂ϑ
+ sinϕı

(
1

sinϑ
∂

∂χ
− cotϑ

∂

∂ϕ

)

which is

Ly = −ı
(

cosϕ
∂

∂ϑ
+ sinϕ

(
1

sinϑ
∂

∂χ
− cotϑ

∂

∂ϕ

))
or, in “final” form

Ly = −ı cosϕ
∂

∂ϑ
− sinϕı

(
1

sinϑ
∂

∂χ
− cotϑ

∂

∂ϕ

)

X. THE HAMILTONIAN

Now we need to obtain

~L ≡ îLx + ĵLy + k̂Lz

which will be used to form the Hamiltonian, presumably
by forming

− h̄2

2Ix
L2
x −

h̄2

2Iy
L2
y −

h̄2

2Iz
L2
z

but it is not clear what the relation is between the Ix, Iy,
and Iz on the one hand, and the IA, IB , and IC values
from the principal axis transformation on the other hand.

We quote the final Schrödinger Equation for symmetric
tops as [3]

1
sinϑ

∂
(
sinϑ∂ψ∂ϑ

)
∂ϑ

+
1

sin2 ϑ

∂2ψ

∂ϕ2
+

(
cot2 ϑ+

C

B

)
∂2ψ

∂χ2
− 2

cotϑ

sinϑ
∂2ψ

∂χ∂ϕ
+
W

hB
ψ = 0

Here, ϑ and ϕ “ are equivalent to the usual polar angles
between an axis fixed space and some axis fixed in the
molecule, and χ is the angle of rotation around the axis
fixed in the molecule. For a symmetric top, this chosen
axis is naturally the molecular or symmetry axis. C is
the rotational constant for the symmetry axis and B is

h̄2

2IB
for the axis perpendicular to the symmetry axis”.

We note that this result is not derived in Townes and
Schawlow, but referenced back to Kemble [4] where it is
also not derived.
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