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Abstract 

 

In a statewide achievement test, the use of a calculator is often allowed as an 

accommodation for students with disabilities (SWD). The purpose of the accommodation is to 

eliminate the disadvantage faced by SWDs relative to peers without disabilities with the same 

level of overall mathematics proficiency. However, it is important to determine if the 

accommodation has changed the construct and meaning of the test scores. One way of examining 

whether the construct has changed due to the accommodation is to compare performance on the 

assessment for SWDs to peers without disabilities, controlling for differences in proficiency. In 

this study, measurement invariance of a statewide 8
th

-grade mathematics test was explored to 

evaluate the comparability of the scores obtained by examinees who were accommodated with 

calculators and those who were not. Structural equation modeling (SEM) was used to assess 

measurement invariance at the content strand level. Also, nonlinear factor analysis (NFLA) was 

used to assess the invariance at the item level and the solution was compared to the SEM results. 

Results indicate the accommodation tended to make items in the content strand Number Sense 

and Operations easier. The relative strengths and limitations of using SEM and NLFA to 

evaluate test accommodations is discussed.  
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A Comparison of Linear and Nonlinear Factor Analysis in Examining the Effect of a Calculator 

Accommodation on Math Performance 

 

Standardized tests are designed to promote fairness in testing by keeping the test content, 

administration conditions, and scoring processes consistent for all examinees.  However, for 

examinees with disabilities, one or more features of the standardized conditions may make it 

more difficult for the student to demonstrate their true knowledge and skills.  For this reason, 

many testing programs offer accommodations to the standard testing conditions to students with 

disabilities.  The purpose of these accommodations is to remove any barrier to valid assessment 

of students’ knowledge and skills.  However, concerns over the degree to which the 

accommodation may change what is measured by the test, warrant research into the degree to 

which test accommodations affect the validity of the interpretations derived from test scores. 

For students who are unable to calculate at any level of difficulty, one common 

nonstandard accommodation is the provision of a calculator. In order to receive this 

accommodation, the students must be virtually unable to perform calculation. Without this 

accommodation, the scores for these students may lead to underestimates of their true 

mathematics proficiency.  

In this study, we examine whether a calculator accommodation changes the measurement 

properties of a large-scale, statewide mathematics assessment. The primary question motivating 

our analyses is, “Does this test measure the same ability in essentially the same way, regardless 

of whether the examinee is allowed to use a calculator?” If the answer to this question is no, then 

the mathematics assessment may not support valid inferences regarding the mathematics 

achievement of students with disabilities (SWD) who are given this accommodation. Since the 
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very purpose of the accommodation is to make the scores of disabled students comparable to 

students without disabilities, it is critically important to determine whether measurement 

invariance holds across both groups of students. If measurement invariance holds, then we can 

say the accommodation does not appear to influence the meaning of the test scores used for a 

particular intended purpose. If measurement invariance does not hold, then it may be necessary 

to modify the accommodation in some way. Thus, studies of measurement invariance are 

important for defending the validity of test accommodations, particularly when scores from 

accommodated and non-accommodated tests are aggregated together when test results are 

reported. Such aggregation is common in testing programs associated with statewide assessments 

under the No Child Left Behind legislation. 

Method 

Participants 

Data from a large-scale, statewide, 8
th

-grade math assessment were gathered from 

roughly 70,000 examinees. Approximately 8% (6,140) of the examinees met the qualifications 

for a specific calculating disability and were allowed to use calculators during the test 

administration. The two groups of students differed dramatically in their observed score 

distributions. The total test score distributions for each group are presented in Figure 1. The no-

calculator group exhibited a moderate ceiling effect, whereas the calculator group exhibited a 

positively-skewed distribution with a much lower average score. As Gotzmann (2001), Gierl, 

Gotzmann, and Boughton (2004), Gotzmann and Boughton (2004), and Sireci and Wells (2009) 

have noted, it is possible that the disparate proficiency distributions could influence the statistical 

analyses (e.g., significance levels and effect sizes). Therefore, it is important to prevent these 

distributional differences from affecting the analysis of measurement invariance. For this reason, 
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a stratified random sample of 6,140 no-calculator students was matched to the calculator group. 

That is, for each calculator student with a given sum score, one of the no-calculator students with 

the same sum score was drawn at random. In addition, both the no-calculator and calculator 

groups were split into random halves to allow for cross-validation.  

 INSERT FIGURE 1 ABOUT HERE  

Instrument 

The math assessment was comprised of 34 items. The items were reported to fall into the 

following content categories: 11 items (1) Patterns, Relations, and Algebra, 10 items in (2) 

Number Sense and Operations, 4 items in (3) Measurement, 3 items in (4) Geometry, and 7 items 

in (5) Data Analysis, Statistics, and Probability. Table 1 shows the content specification of this 

test.  

Data Analysis 

NOHARM  procedure. In multi-group confirmatory factor analysis, it is possible to test 

for differences in factor loadings and intercepts between groups. However, this approach is not 

best when the indicators are dichotomously scored items. The factor loading of an indicator is the 

slope of the regression of the indicator on the factor/ability/construct measured by all of the 

indicators in common. If the indicator is dichotomously scored, then the expected score is the 

same as the probability of answering the item correctly. Because the relationship between the 

construct and the probability of answering correctly is non-linear, analyzing a set of dichotomous 

items requires a nonlinear factor model that keeps the expected score of each item between zero 

and one. 

To address this problem, the item scores in each half of each group were analyzed with 

the computer program NOHARM (Fraser & McDonald, 2003), which implements a nonlinear 
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form of factor analysis appropriate for dichotomous items. The ith examinee’s response to the jth 

item is assumed to be determined by an underlying continuous quantity ( *

ij j i ijX λ θ ε= + ), where 

iθ  is the examinee’s standing on the common factor measured by the test as a whole, 
j

λ  is the 

item’s loading on the common factor, and 
ij
ε  is the ith examinee’s unique behavior on the jth 

item that is unaccounted for by the examinee’s standing on the common factor. If this quantity 

exceeds a certain threshold ( *

ij jX τ> ), the examinee gives the correct response to the item. If this 

quantity does not exceed the threshold ( *

ij jX τ< ), the examinee gives an incorrect response. 

Thus, NOHARM treats the continuous quantities underlying the item responses as indicators of 

the common factor θ. Both *

jX  and θ are scaled to have standard normal distributions.  

The output of NOHARM includes the loading of each item’s underlying continuous 

quantity on the common factor (
j

λ ) and each item’s threshold (
j

τ ). NOHARM places the sign 

on 
j

τ  in such a way that larger values correspond to easier items. The area under the curve of the 

standard normal distribution, from negative infinity to the threshold parameter, gives the 

percentage of examinees getting the item correct. This means that each 
j

τ  can be treated as a Z-

score of item difficulty, which helps with interpretation. 

 McDonald (1999) showed that this nonlinear factor analysis of dichotomous items is 

equivalent to item response theory (IRT). The traditional IRT parameterization says that an 

examinee with factor level θ has a probability of getting item j correct equal to  

1
( 1| )

1 exp[ 1.7 ( )]
j

j j

P x
a b

θ
θ

= =
+ − −

,  
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where ja  is the discrimination parameter, and jb is the difficulty parameter. McDonald showed 

that to convert jλ to ja , we can use the equation 2/ 1j j ja λ λ= − . It turns out that we need both 

jτ  and jλ to obtain jb . We can use the equation /j j jb τ λ= − . These conversions may be helpful 

to readers who are used to the traditional IRT notation but not the factor analysis notation. Note 

that a strength of NOHARM is its capacity to estimate IRT models with more than one construct 

dimension. 

Differential item functioning (DIF) represents the situation where members of two groups 

differ in the probability of getting an item correct even when matched for the overall construct. 

In the context of NOHARM, DIF can occur for the following reasons: (1) the two groups have 

different thresholds ( jτ ) that their underlying continuous quantities must exceed in order to get 

this item right, and (2) the two groups have different slopes ( jλ ) in the regression of their 

underlying continuous quantities on the common factor (θ). In the traditional IRT 

parameterization, (1) means that the two groups have different difficulty parameters ( jb ). Even if 

the item is equally discriminating in the two groups, a member of the group with the larger 

difficulty parameter will find the item harder than an equally proficient member of the other 

group. (2) means that the two groups differ in both their discrimination ( ja ) and difficulty ( jb ) 

parameters. Essentially, the item is a less reliable indicator of the construct in the group with the 

lower discrimination parameter. 

 The item parameters of the no-calculator and calculator groups were tested for DIF 

according to a procedure given by Lord (1980) and modified by McDonald (1999). Lord 

proposed plotting one group’s IRT parameters for several items (e.g., the items’ discrimination 

parameters) against the other groups’ parameters. Any items lying far from the best-fitting 
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straight line are identified as showing DIF. McDonald modified this procedure by using the 

factor analysis parameterization of IRT instead of Lord’s traditional parameterization. In 

McDonald’s examples, the factor analysis parameterization of the IRT model tended to agree 

more across groups than the traditional parameterization, suggesting that it is easier to get 

accurate estimates of the factor analysis parameterization. This led McDonald to conjecture that 

the factor analysis parameterization used by NOHARM is superior for the purpose of conducting 

DIF analysis.   

If the construct measured by the test has the same distribution in two groups, and if there 

is no DIF, then in a graph plotting the factor loadings in one group against the factor loadings in 

the other group, the points should lie on a straight line through the origin with a slope of 1. 

Under the same conditions, a graph plotting the thresholds in one group against the thresholds in 

the other group should also show a straight line through the origin with a slope of 1. If the item 

parameters as a whole do not show this pattern in one of the graphs, then we can conclude that 

many of the items show strong DIF. If the pattern does show up but an individual item lies very 

far from the line, then that particular item shows strong DIF. This visual approach was used to 

look for DIF. Potential cases of DIF were then verified in the cross-validation samples.  

A statistical hypothesis-testing approach was also used to look for DIF. McDonald (1999) 

stated that the reciprocal of the root sample size gives a rough standard error for a factor loading 

estimated by NOHARM. In our case, SE ( $Cλ ) = SE ( $NCλ ) = 
1

3070
 = .018.

1
 The standard error 

of the difference between the two factor loadings can be computed as  

SD ( $NCλ - $Cλ ) = $ $( )NC CVar λ λ−   

                                                 
1
 The hat over the λ ’s are meant to emphasize that they stand for the estimates of the factor loadings, not the factor 

loadings themselves.  
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           = $ $ $ $( ) ( ) 2 ( )NC C NC CVar Var Covλ λ λ λ+ − −  

           = $ $2 ( ) 2 ( )NC NCVar SEλ λ= × . 

This procedure was used to test for group discrepancies in factor loadings by constructing the 

95% confidence interval, $ $ $ $ $1.96 2 ( ) .05NC C NC NC CSEλ λ λ λ λ− ± × × = − ± . Therefore, any 

differences in factor loadings, $ $
NC Cλ λ− , exceeding |.05| will be statistically significant.  

Since the threshold parameter is a simple function of the proportion getting the item 

correct (item difficulty), a test for the difference between two proportions was used to test for 

group discrepancies in thresholds. This procedure involves computing the standard deviation of 

the sampling distribution of the difference between two proportions, SE =
1 2

(1 )

1 1

p p

n n

−

+
 , where p 

is the pooled sample proportion, 1n  is the size of the no-calculator group, and 2n  is the size of 

calculator group. The test statistic is Z = 1 2( )p p

SE

−
.   

Note that the null hypothesis that the two groups are exactly equal in some parameter is 

false in real data (Cohen, 1994) and not really an interesting hypothesis; we care more about 

whether an estimated difference is large enough to be practically meaningful. So, the fact that a 

parameter difference is statistically significant is not necessarily a sign of meaningful DIF. If a 

difference is statistically significant, we should go on to consider whether the difference is large 

enough to be a cause for concern. Steinberg and Thissen (2006) suggested that a difference in the 

traditional IRT b parameter larger than .5 is practically meaningful. They do not make a 

suggestion for the a parameter. However, they do state that “[f]or many purposes, graphical 

displays of trace lines and/or their differences are easier to interpret than the parameters 

themselves” (p. 406). To convey the practical importance of differences in both difficulties and 
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discriminations, the test characteristic curves (TCCs) of the entire student groups were obtained 

for each of the five content strands and displayed in graphical form. The TCC gives the expected 

score on the content strand for a given level of the underlying construct. Therefore, the TCC 

gives a direct presentation of DIF effect size on the scale of the test (number correct). We can 

obtain the TCC of a given content strand by adding the item response functions of each item in 

the strand (Equation 1).   

NOHARM  Data Analysis. 

In the first no-calculator sample, a unidimensional 3-parameter IRT model did not fit the 

data well. There were several Heywood cases (i.e., items with factor loadings estimated to equal 

1). It is unclear why these items are Heywood cases; there is nothing distinctive about them in 

terms of difficulty or content strands. Since it is unlikely that any item is a perfect indicator of a 

construct, Heywood cases indicate that there is a problem. In this situation, the problem might be 

that many examinees obtained scores below 7 (Figure 1), which would be roughly the expected 

score if an examinee responded randomly to the multiple-choice items. This implies that low-

ability examinees were systematically attracted to the incorrect responses. Whenever this 

happens, it might not be appropriate to include a lower-asymptote parameter, which assumes that 

examinees with very low ability always have some chance of responding correctly.  

A unidimensional 2-parameter IRT model for the first no-calculator sample was tried 

instead. This model did not produce any Heywood cases. The Tanaka goodness-of-fit index 

was .987, indicating that the model fit the data well. A unidimensional 2-parameter IRT model 

was then fit to the data of the first calculator sample, and this was also successful (Tanaka GFI 

= .984). Good fits were also obtained in the cross-validation no-calculator sample (Tanaka GFI 

= .988) and in the cross-validation calculator sample (Tanaka GFI = .982). 
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Structural Equation Modeling. 

Because the NOHARM approach to IRT does not provide statistical tests of any global 

hypothesis (e.g., measurement invariance between the two groups), the items were grouped into 

five parcels according to the five content strands and fit to an SEM multiple indicators and 

multiple causes (MIMIC) model with the computer program LISREL 8.80 using maximum 

likelihood estimation on covariance matrices. The grouping into parcels was necessary in order 

to create suitable indicators for SEM analysis. Since the unidimensional model is appropriate for 

the entire set of items, grouping the items into parcels on the basis of item-content domain 

specification is also appropriate. In the same way that IRT uses single items as indicators of a 

common factor, the structural equation modeling (SEM) approach to factor analysis uses 

continuous (or approximately continuous) test or parcel subscores as indicators of a common 

factor. 

 The score ranges for the five content strands in this data set are: 0-11 for Algebra, 0-10 

for Number Sense, 0-3 for Measurement, 0-3 for Geometry, and 0-7 for Statistics. 

A battery of test subscores shows a failure of measurement invariance across two groups 

if (1) the two populations have different intercepts in the regression of subscores on the common 

factor, or (2) the two populations have different slopes (factor loadings) in this regression. Lack 

of measurement invariance in the SEM framework is therefore analogous to DIF in the IRT 

framework. The purpose of a MIMIC factor model in SEM is to examine whether different 

groups have the same intercepts in the regression of subscores on the common factor. It may be 

helpful to consult Figure 8 while reading the following explanation. The MIMIC model can be 

written as  

,j j j j jX Gα δ λ θ ε= + + +  
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in which jX  denotes the jth parcel score, jα denotes the intercept, jδ denotes the difference in 

intercepts between the groups, G denotes the group dummy variable, jλ denotes the factor 

loading, θ denotes factor score, and jε  denotes the error. A MIMIC model uses a path from a 

grouping variable (i.e., calculator vs. no-calculator) to the common factor to account for the 

difference between groups in the average level of the factor. If a path going directly from the 

grouping variable to a subscore is necessary for good model fit, then the two groups have 

different intercepts in the regression of that subscore on the common factor. In other words, even 

if members of two groups have the same level of the factor, the member of the group with the 

higher intercept will have a higher expected subscore. In terms of the equation above, a 

significant path from the grouping variable to the jth parcel score means that jδ  is not equal to 

zero. 
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Results 

If the construct measured by the test has the same distribution in two groups, and if there 

is no DIF, then in a graph plotting the factor loadings in one group against the factor loadings in 

the other group, the points should lie on a straight line through the origin with a slope of 1. Note 

that the two samples had identical observed-score distributions as a result of the stratified 

sampling. Figure 2 shows such a graph for the first no-calculator and calculator samples. Figure 

3 shows the corresponding graph for the cross-validation samples. 

INSERT FIGURE 2 ABOUT HERE 

INSERT FIGURE 3 ABOUT HERE  

The fit to a straight line through the origin with a slope of 1 looks fairly good overall in 

both the original and cross-validation samples. In the first samples, a linear regression of the 

calculator group’s factor loadings on the no-calculator group’s factor loadings gives an intercept 

of -.001 and a slope of .965. In the cross-validation samples, the linear regression gives an 

intercept of .012 and a slope of .983. This good fit to a straight line through the origin with a 

slope of 1 means that there is not much overall DIF with respect to the factor loadings (item 

discriminations in the IRT framework) between the no-calculator and calculator groups. 

There are some signs of potentially noteworthy DIF with respect to factor loading in a 

few items. For instance, in both the first and cross-validation samples, items 10 and 28 seem to 

deviate rather far from the line. These items appear to be less discriminating in the calculator 

group. 

INSERT FIGURE 4 ABOUT HERE 
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 Figure 4 plots the thresholds in the first calculator sample against the thresholds in the 

first no-calculator sample. The area under the curve of the standard normal distribution, from 

negative infinity to the threshold parameter, gives the percentage of examinees getting the item 

correct. This means that larger thresholds correspond to easier items. Again, if the two groups 

have the same distribution of the ability measured by the test, and if there is no DIF, then the 

points should lie on a straight line through the origin with a slope of 1. The fit to the straight line, 

once again, looks fairly good overall, suggesting there is not much overall DIF with respect to 

thresholds, either. The cross-validation samples support this conclusion (Figure 5).  

INSERT FIGURE 5 ABOUT HERE 

In the first samples, a linear regression of the calculator group’s thresholds on the no-

calculator group’s thresholds gives an intercept of -.029 and a slope of .892. In the cross-

validation samples, the linear regression gives an intercept of -.043 and a slope of .831. The 

slopes are less than 1 because more items are on the right side of the line than on the left side; 

this means that the items tend to be slightly easier for the no-calculator group. A possible reason 

for this trend will be discussed later. In addition, it is clear that items 2 and 17 are unacceptably 

far from the line and show substantial DIF. These items are easier for the calculator group. 

Table 2 presents the numerical results of the DIF analysis. Only items with a parameter 

showing statistically significant DIF in both the original and cross-validation samples are shown 

in Table 2. The only significant group differences in factor loadings replicated in the cross-

validation samples were found for items 10 and 28. These items were already noted to be 

possible outliers in Figures 2 and 3. The other items do not show consistent evidence of strong 

DIF with respect to factor loadings. 
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There were many significant group differences in thresholds. Most of these were small 

differences favoring the no-calculator group. The few differences favoring the calculator group 

are worrisome because they tended to be much larger. Using the rule of thumb that flags a 

difference in the traditional IRT b parameter exceeding .5, we find that items 2, 6, and 17 

showed practically meaningful DIF with respect to difficulty. As expected from Figures 4 and 5, 

these three items showed substantial differences favoring the calculator group.  

Content Analysis and Hypotheses Regarding Sources of DIF 

As discussed previously, items 2 and 17 tended to be easier for the calculator group. 

These items belonged to the content strand Number Sense and Operations. According to Table 2, 

there were four other items belonging to the content strand Number Sense and Operations that 

tended to be easier for the calculator group. A closer look at items 2 and 17 indicated that they 

focus on computation skills. Accordingly, students with accommodation may have had an 

advantage on these types of items. Item 6 belonged to the content strand Geometry. This item 

could have been reduced to a simpler computational problem since the formula for the 

Pythogorean theorem was provided on the reference sheet. 

Items 10 and 28 showed evidence of DIF with respect to item factor loadings. These 

items discriminated among students with accommodation less effectively than among students 

taking the test under normal conditions. Item 10 belonged to Number Sense and Operations, and 

item 28 belonged to Patterns, Relations, and Algebra. The reasons for DIF are less clear for these 

items.  

 The substantial DIF for the Number Sense and Operations items may explain why the 

other items in the test tended to be somewhat easier for the no-calculator group. If a few Number 

Sense items show strong DIF with respect to thresholds favoring the calculator group, then the 
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no-calculator students must have been somewhat more able overall, because they were matched 

with calculator students according to sum scores. Thus, the no-calculator group would have 

found many of the items slightly easier.  

 Figure 6 shows the test characteristic curves (TCCs) for the five content strands for the 

whole student population. 

INSERT FIGURE 6 ABOUT HERE 

The TCCs of the no-calculator and calculator groups were very similar for each content strand. 

As expected from the analysis of the individual items, the difference in the TCC between the two 

groups was greatest for Number Sense and Operations (this difference was consistent across the 

two samples). On this content strand, the calculator group showed a noticeable advantage. The 

calculator group also showed a noticeable advantage on Geometry at the higher end of the ability 

range; this is perhaps consistent with the fact that one Geometry item was substantially easier for 

the calculator group. But even on these two content strands, the expected scores of the two 

groups never differed by more than a small fraction of a score point. For example, for Number 

Sense and Operations, the maximum difference between the two TCCs is only 0.07 score points. 

This suggests that the statistically significant cases of DIF in the other three content strands are 

not practically meaningful.  

MIMIC Model 

A MIMIC model was fit to test the global hypothesis that there is a failure of 

measurement invariance between the two groups in Number Sense and Operations due to the use 

of calculators. Appendix A contains the LISREL syntax for the MIMIC models. 

Note that the MIMIC model does not test for the differences in factor loadings. By using 

a MIMIC model, we are assuming that the factor loadings describing the relationship between 
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the construct and its indicators are essentially the same for the two groups. In other words, we 

are assuming that there is only uniform DIF, which means that one group always has a higher 

expected score across the entire range of ability. Therefore if any differences in factor loadings 

exist, then MIMIC is not an appropriate model for testing measurement invariance. However, our 

DIF analysis did not find large differences in item factor loadings. Figure 6 confirms that the 

expected scores on the content strands increase with higher levels of the construct in similar 

ways across the two groups.  

 In all of the analyses below, the path from the mathematics achievement factor to 

Algebra was fixed to one in order to scale the factor. Algebra was chosen because its relationship 

to the math factor is strong (Figure 6). 

First, a MIMIC model was fit without a path from the group variable to Number Sense 

(Figure 7).  

INSERT FIGURE 7 ABOUT HERE 

The model fit was acceptable: RMSEA = .048 with 90% C.I. (.041, .055), CFI = .99, SRMR 

= .021, and GFI = .99.  

To determine whether the alternative hypothesis fits better, a MIMIC model was fit to the 

data adding a path from the group variable to Number Sense (Figure 8).  

INSERT FIGURE 8 ABOUT HERE 

The fit for this model to the data was improved: RMSEA = .023 with 90% C.I. (.015, .031), CFI 

= 1, SRMR = .0097, and GFI = 1), and the ∆ 2χ  between the two models was statistically 

significant (χ2
=102.29, ∆df =1, p < .05). In addition, ∆CFI = .01 indicated that this improvement 

in fit was meaningful. Therefore, the model incorporating a lack of invariance for the Number 

Sense strand fit substantially better than the model assuming measurement invariance across all 
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strands. The negative path coefficient from the group indicator to the construct of math ( 11γ = -

 .14, p = .006) and the positive path coefficient from the group indicator to Number Sense 

( 21γ = .43, p < .05) indicate that the calculator group performed worse on content strands other 

than Number Sense. These path coefficients are unstandardized. We can look at the differences 

between the two groups in units of standard deviations. The advantage of the no-calculator group 

over the calculator group in the math achievement factor was approximately .08 standard units, 

while the advantage of the calculator group in Number Sense was approximately .21 standard 

units. As stated above, because students in the no-calculator group were matched to those in 

calculator group on the basis of on sum scores, if the calculator group performed better on 

average in Number Sense, then the no-calculator group had to perform better in other areas to 

end up with matched sum scores
2
.   

 

Therefore, the MIMIC analysis strongly supports the hypothesis that the use of calculators has 

led to a failure of measurement invariance between the two groups in Number Sense and 

Operations. 

Discussion 

In this study, we examined whether the calculator accommodation changed the 

measurement properties of an 8
th

-grade mathematics test. Overall, there was very little difference 

in factor loadings between the no-calculator and calculator groups. This suggests that differences 

                                                 
2
 To ensure that this result was not obtained by chance, the analyses above were replicated with 

the cross-validation samples. A MIMIC model was fit without the path from the group variable to 

Number Sense. The result was similar to the one above. The model fit was generally good: RMSEA 

= .047 with 90% C.I. (.040, .054), CFI = .99, SRMR = .022, and GFI = .99. Then the MIMIC model 

including a path from the group variable to Number Sense was fit. The fit of this model was again 

impressive: RMSEA = .022 with 90% C.I. (.014, .030), CFI = 1, SRMR = .011, and GFI = 1). The ∆
2χ  

between the two models was 100.24 and ∆df was 1 (p < .05). The change in CFI was again .01. 
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among students within either the no-calculator and calculator groups have similar meanings. That 

is, if students A and B come from the same group and differ by x score points, then this 

difference implies roughly the same difference in mathematics achievement no matter which 

group A and B come from. However, if students A and B come from different groups, then the 

interpretation of their score difference is complicated. When the examinee is allowed to use a 

calculator, the test no longer seems to measure one of the content strands in the way that it does 

for students without the calculator. Specifically, the accommodated group performed relatively 

better on average in Number Sense and Operations, so it appears that a calculator makes items of 

this type easier. As a result, the use of calculator as a form of accommodation may not allow 

valid comparisons of mathematics achievement in this content strand between students with 

learning disabilities and students taking the test under normal conditions. In other words, the 

failure of measurement invariance does not allow us to infer that the students from different 

groups with comparable sum scores have equal levels of the construct measured by the test. 

Comparisons across the students with disabilities granted the calculator accommodation and 

students taking the tests without a calculator should be limited to only the other content strands. 

This study showed the failure of measurement invariance using two levels of analysis—

item level and parcel level, using two statistical procedures (nonlinear factor analysis and 

structural equation modeling). Using nonlinear factor analysis to compare the test characteristic 

curves of the two groups presents a theoretically sound way to investigate measurement 

invariance. The use of the MIMIC model supplemented this analysis with tests of overall 

hypotheses. These two procedures provide a comprehensive means for investigating 

measurement invariance across standard and accommodated test administration conditions. 
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Table 1 

Test Specifications: The Statewide Grade 8 Mathematics Items 

 

                                                                                                          

Content Strand 

 

Percentage (+/- 5%) 

 

 

Total Number of Points 

Number Sense and Operations 26 % 14 

Patterns, Relations, and Algebra 28 % 15 

Geometry  13 % 7 

Measurement 13 % 7 

Data Analysis, Statistics and Probability 20 % 11 
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Table 2 

DIF Analysis: The Statewide Grade 8 Mathematics Items  

Item Content Strand      - 

 

 - 

 

2 Number Sense and Operations -.366 .042 .482 .468 -.408* .014 

  -.380 .057 .512 .550 -.437* -.038 

3 Measurement -.079 -.192 .492 .508 .113 -.016 

  -.060 -.184 .484 .548 .124 -.064 

6 Geometry -.307 -.185 .112 .128 -.122* -.016 

  -.274 -.185 .118 .184 -.089* -.066 

8 Measurement -1.046 -.885 .532 .565 -.161 -.033 

  -1.023 -.912 .504 .597 -.111* -.093 

10 Number Sense and Operations .135 .162 .299 .226 -.027 .073 

  .186 .104 .301 .246 .082 .055 

11 Number Sense and Operations -.445 -.316 .353 .350 -.129 .003 

  -.509 -.373 .373 .394 -.136 -.021 

14 Number Sense and Operations -.253 -.157 .390 .436 -.096 -.046 

  -.294 -.142 .411 .447 -.152 -.036 

15 Patterns, Relations, and Algebra -.222 -.409 .620 .532 .187 .088 

  -.239 -.355 .602 .601 .116 .001 

17 Number Sense and Operations -.569 -.199 .467 .405 -.370* .062 

  -.547 -.226 .451 .405 -.321* .046 

19 Number Sense and Operations -1.168 -1.060 .551 .416 -.108 .135 

  -1.270 -1.064 .530 .495 -.206 .035 

22 Number Sense and Operations -.132 -.228 .481 .456 .096 .025 

  -.138 -.228 .413 .460 .090 -.047 

25 Patterns, Relations, and Algebra -.231 -.296 .355 .353 .065 .002 

  -.234 -.332 .408 .338 .098 .070 

27 Number Sense and Operations -.048 -.164 .532 .475 .116 .057 

  -.057 -.150 .543 .510 .093 .033 

28 Patterns, Relations, and Algebra -.140 -.157 .543 .412 .017 .131 
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  -.144 -.162 .526 .450 .018 .076 

31 Data Analysis, Statistics, and 

Probability 

-.369 -.569 .557 .460 .200* .097 

  -.397 -.548 .543 .548 .151 -.005 

33 Patterns, Relations, and Algebra .053 -.030 .401 .369 .083 .032 

  0.068 -.016 .395 .397 .084 -.002 

Note.  stands for the threshold parameter and  for the factor loading. The subscript NC stands 

for the no-calculator group and C for the calculator group. Statistically significant differences 

between the no-calculator and calculator groups at the .05 level are in bold. Threshold 

differences marked with asterisks correspond to differences in the traditional IRT b parameter 

that exceed .5. 
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Figure Captions 

Figure 1. Histograms of the Grade 8 Mathematics sum scores for (a) the no-calculator group and 

(b) the calculator group. 

Figure 2. An illustration of the MIMIC model.  

Figure 3. Factor loadings in the first calculator group plotted against the factor loadings in the 

first no-calculator group. A line through the origin with a slope of 1 has been superimposed. 

Figure 4. Factor loadings in the cross-validation calculator group plotted against the factor 

loadings in the cross-validation no-calculator group.  

Figure 5. Thresholds in the first calculator group plotted against the thresholds in the first no-

calculator group. A larger threshold indicates that the item is easier. 

Figure 6. Test characteristic curves for the five content strands. “Algebra” stands for the content 

strand Patterns, Relations, and Algebra. “Measurement” stands for the content strand 

Measurement. “Geometry” stands for the content strand Geometry. “Statistics” stands for the 

content strand Data Analysis, Statistics, and Probability. “Number Sense” stands for the content 

strand Number Sense and Operations. 

Figure 7. MIMIC model without a path from the group variable to Number Sense. The path 

coefficients are unstandardized, and the numbers in parentheses are standard errors. Calculator 

Group was dichotomously coded: 1 for the calculator group and 0 for the non-calculator group. 

The numbers in parentheses indicate the standard errors of the path coefficients. 

Figure 8. MIMIC model with a path from the group variable to Number Sense. The path 

coefficients are unstandardized, and the numbers in parentheses are standard errors.  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 

 
 

 = 135.55, df = 9, RMSEA = .048
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Figure 8 

 

 

 = 33.26, df = 8, RMSEA = .023 
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Appendix A 

LISREL Syntax of the MIMIX models fitted for the first half (Half1) and cross-validation 

(Half2) groups 

 

LISREL syntax for the MIMIC model without a path from the group variable to Number Sense 

for Half1 

Half1 
DA NI=6 NO=6140 MA=CM 
LA 
Alg NumSen Meas Geom Stats CalcGP 
CM SY 
5.67718992   
2.71464904  4.32624002   
0.92411172  0.87003581  0.850659610   
0.75125003  0.66858879  0.255003494  0.83864997   
1.86187203  1.52325032  0.578226886  0.44896481  2.49831167  
-.04455123  0.07664115 -0.004235217 -0.00301352 -0.02842482  0.250040723 
MO NY=5 NX=1 BE=FU,FI NE=1 GA=FU,FI PS=SY,DI LY=FI TE=FI 
LE 
Math 
FR GA(1,1)  
FR LY(2,1) LY(3,1) LY(4,1) LY(5,1)  
FR TE(1,1) TE(2,2) TE(3,3) TE(4,4) TE(5,5) 
VA 1 LY(1,1)  
PD 
OU ME=ML TV SE MI RS 
 

LISREL syntax for the MIMIC model with a path from the group variable to Number Sense for 

Half1 

Half1 
DA NI=6 NO=6140 MA=CM 
LA 
Alg NumSen Meas Geom Stats CalcGP 
CM SY 
5.67718992 
2.71464904  4.32624002 
0.92411172  0.87003581  0.850659610 
0.75125003  0.66858879  0.255003494  0.83864997 
1.86187203  1.52325032  0.578226886  0.44896481  2.49831167 
-.04455123  0.07664115 -0.004235217 -0.00301352 -0.02842482  0.250040723 
MO NY=5 NX=1 BE=FU,FI NE=2 GA=FU,FI PS=SY,DI LY=FI TE=FI 
LE 
Math NumSen 



  Calculator Accommodation   35 

 

35 

 

FR GA(1,1) GA(2,1) 
FR BE(2,1) 
FR LY(3,1) LY(4,1) LY(5,1) 
FR TE(1,1) TE(3,3) TE(4,4) TE(5,5) 
VA 1 LY(1,1) LY(2,2) 
PD 
OU ME=ML TV SE MI RS 
 

LISREL syntax for the MIMIC model without a path from the group variable to Number Sense 

for Half2 

Half2 
DA NI=6 NO=6140 MA=CM 
LA 
Alg NumSen Meas Geom Stats CalcGP 
CM SY 
5.69198102   
2.75695619  4.40075270  
0.98160763  0.89872503  0.821543472  
0.82414429  0.72103596  0.276924432 0.853324158   
1.84342188  1.56057252  0.608241005 0.505543137  2.49367872  
-0.04243362  0.07867731 -0.005701254 0.007493077 -0.03445187  0.250040723 
MO NY=5 NX=1 BE=FU,FI NE=1 GA=FU,FI PS=SY,DI LY=FI TE=FI 
LE 
Math 
FR GA(1,1)  
FR LY(2,1) LY(3,1) LY(4,1) LY(5,1)  
FR TE(1,1) TE(2,2) TE(3,3) TE(4,4) TE(5,5) 
VA 1 LY(1,1)  
PD 
OU ME=ML TV SE MI RS 
 

 

LISREL syntax for the MIMIC model with a path from the group variable to Number Sense for 

Half2 

Half2 
DA NI=6 NO=6140 MA=CM 
LA 
Alg NumSen Meas Geom Stats CalcGP 
CM SY 
5.69198102   
2.75695619  4.40075270  
0.98160763  0.89872503  0.821543472  
0.82414429  0.72103596  0.276924432 0.853324158   
1.84342188  1.56057252  0.608241005 0.505543137  2.49367872  
-0.04243362  0.07867731 -0.005701254 0.007493077 -0.03445187  0.250040723 
MO NY=5 NX=1 BE=FU,FI NE=2 GA=FU,FI PS=SY,DI LY=FI TE=FI 
LE 
Math NumSen 
FR GA(1,1) GA(2,1) 
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FR BE(2,1) 
FR LY(3,1) LY(4,1) LY(5,1)  
FR TE(1,1) TE(3,3) TE(4,4) TE(5,5) 
VA 1 LY(1,1) LY(2,2) 
PD 
OU ME=ML TV SE MI RS 
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