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Laguerre Polynomials, an Introduction

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
(Dated: August 4, 2006)

I. SYNOPSIS

The radial part of the Schrödinger Equation for the
H-atom consists of functions related to Laguerre polyno-
mials, hence this introduction

II. INTRODUCTION

The radial equation for the H-atom is [1]:

− h̄2

2µ

[
d2

dr2
+

2
r

d

dr
− `(` + 1)

r2

]
R(r)− Ze2

r
R(r) = ER(r)

which we need to bring to dimensionless form before pro-
ceeding (text book form). Cross multiplying, and defin-

ing ε = −E we have

[
d2

dr2
+

2
r

d

dr
− `(` + 1)

r2

]
R(r)+

2µZe2

h̄2r
R(r)−2µε

h̄2 R(r) = 0

and where we are going to only solve for states with ε > 0,
i.e., negative energy states.

Defining a dimensionless distance, ρ = αr we have

d

dr
=

dρ
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d

dρ
= α

d

dρ

so that the equation becomes

α2

[
d2

dρ2
+

2
ρ

d

dρ
− `(` + 1)

ρ2

]
R(ρ) +

2µZe2α

h̄2ρ
R(ρ)− 2µε

h̄2 R(ρ) = 0

which is, upon dividing through by α2,[
d2

dρ2
+

2
ρ

d

dρ
− `(` + 1)

ρ2

]
R(ρ) +

2µZe2

h̄2ρα
R(ρ)− 2µε

h̄2α2
R(ρ) = 0

Now, we choose α as (α

2

)2

=
2µε

h̄2

so To continue, we re-start our discussion with Laguerre’s
differential equation:

x
d2y∗

dx2
+ (1− x)

dy∗

dx
+ αy∗ = 0 (2.1)

To show that this equation is related to Equation II we
differentiate Equation 2.1

d
(
xd2y∗

dx2 + (1− x)dy∗

dx + αy∗ = 0
)

dx
(2.2)

which gives

y∗′′ + xy∗′′′ − y∗′ + (1− x)y∗′′ + αy∗′ = 0

which is

xy∗′′′ + (2− x)y∗′′ + (α− 1)y∗′ = 0

or (
x

d2

dx2
+ (2− x)

d

dx
+ (α− 1)

)
dy∗

dx
= 0 (2.3)

Doing it again (differentiating), we obtain

d (xy∗′′′ + (2− x)y∗′′ + (α− 1)y∗′ = 0)
dx

which leads to

y∗′′′ + xy∗′′′′ − y∗′′ + (2− x)y∗′′′ + (α− 1)y∗′′ = 0

which finally becomes(
x

d2

dx2
+ (3− x)

d

dx
+ (α− 2)

)
d2y∗

dx2
= 0 (2.4)
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Generalizing, we have(
x

d2

dx2
+ (k + 1− x)

d

dx
+ (α− k)

)
dky∗

dxk
= 0 (2.5)

III. PART 2

Consider Equation II[
d2

dρ2
+

2
ρ

d

dρ
R(ρ)− `(` + 1

ρ2

]
R(ρ)+

2µZe2

h̄2ρα
R(ρ)−R(ρ)

4
= 0

(3.1)
if we re-write it as[
ρ

d2

dρ2
+ 2

d

dρ
− `(` + 1

ρ

]
R(ρ)+

2µZe2

h̄2α
R(ρ)− ρ

4
R(ρ) = 0

(3.2)
(for comparison with the following):

xy′′ + 2y′ +
(

n− k − 1
2

− x

4
− k2 − 1

4x

)
y = 0 (3.3)

Notice the similarity if ρ ∼ x, i.e., powers of x, x−1 etc.,

2µZe2

h̄2α
⇀↽ n− k − 1

2
(3.4)

ρ ⇀↽
x

4
(3.5)

k2 − 1
4x

⇀↽
`(` + 1)

ρ
(3.6)

We force the asymptotic form of the solution y(x) to
be exponentially decreasing, i.e.,

y = e−x/2x(k−1)/2v(x) (3.7)

and “ask” what equation v(x) solves. We do this in two
steps, first assuming

y(x) = x(k−1)/2w(x)

and then assuming that w(x) is

w(x) = e−x/2v(x)

So, assuming the first part of Equation 3.7, we have

y′(x) =
k − 1

2
x(k−3)/2w(x) + x(k−1)/2w′(x)

and

y′′(x) =
k − 1

2
k − 3

2
x(k−5)/2w(x) +

k − 1
2

x(k−3)/2w′(x) +
k − 1

2
x(k−3)/2w′(x) + x(k−1)/2w′′(x) = 0

which we now substitute into Equation 3.3 to obtain

xy′′ =
k − 1

2
k − 3

2
x(k−3)/2w(x) + (k − 1)x(k−1)/2w′(x) + x(k+1)/2w′′(x)

2y′ = 2
k − 1

2
x(k−3)/2w(x) + 2x(k−1)/2w′(x)

ny = nx(k−1)/2w(x)

−k − 1
2

y = −k − 1
2

x(k−1)/2w

−x

4
y = −x(k+1)/2

4
w

−k2 − 1
4x

y = −k2 − 1
4

x(k−3)/2w

= 0 (3.8)

or

xw′′ + (k + 1)w′ +
(

n− k − 1
2

− x

4

)
w = 0 (3.9)

IV.

Now we let

w = e−x/2v(x)
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(as noted before) to obtain

w′ = −1
2
e−x/2v + e−x/2v′

w′′ =
1
4
e−x/2v − e−x/2v′ + e−x/2v′′

Substituting into Equation 3.8 we have:

xw′′ = e−x/2
(x

4
v − xv′ + xv′′

)
(k + 1)w′ = e−x/2

(
−k + 1

2
v + (k + 1)v′

)
(

n− k − 1
2

− x

4

)
w = e−x/2

(
n− k − 1

2
− x

4

)
v = 0 (4.1)

so, v solves Equation 2.5 if α = n. Expanding the r.h.s.
of Equation 4.1 we have

x

4
v− x

4
+xv′′+(k+1−x)v′+

(
n− k − 1

2
− k + 1

2

)
v = 0

i.e.,

xv′′ + (k + 1− x)v′ + (n− k)v = 0

which is Equation 2.5, i.e.,

v =
dky

dxk

and

y = e−x/2x(k−1)/2 dky∗

dxk

or

w′′ =
1
4
e−x/2v − e−x/2v′ + e−x/2v′′

so, substituting into Equation 3.8 we have

xw′′ = e−x/2
(x

4
v − xv′ + xv′′

)
(k + 1)w′ = e−x/2

(
−k + 1

2
v + (k + 1)v′

)
(

n− k − 1
2

− x

4

)
w = e−x/2

(
n− k − 1

2
− x

4

)
v = 0 (4.2)

so, v solves Equation 2.5 if α = n. Expanding the r.h.s.
of Equation 4.2 we have

x

4
v− x

4
+xv′′+(k+1−x)v′+

(
n− k − 1

2
− k + 1

2

)
v = 0

i.e.,

xv′′ + (k + 1− x)v′ + (n− k)v = 0

which is Equation 2.5, i.e.,

v =
dky∗

dxk

and

y = e−x/2x(k−1)/2 dky∗

dxk

or

R(ρ) = e−ρ/2ρ(k−1)/2)Lk
n∗(ρ)

where y∗ and R(ρ) are solutions to Laguerre’s Equation
of degree n. Wow.
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V. PART 3

Now, all we need do is solve Laguerre’s differential
equation Equation 2.1 (we drop the superscript star
now):

xy′′ + (1− x)y′ + γy = 0

where γ is a constant (to be discovered). We let

y =
?∑

λ=0

aλxλ

and proceed as normal

xy′′ = 2a2x + (3)(2)a3x
2 + (4)(3)a4x

3 + · · ·
+y′ = (1)a1 + (2)a2x + (3)a3x

2 + (4)a4x
3 + · · ·

−xy′ = −a1x− (2)a2x
2 − (3)a3x

3 − · · ·
+γy = γa0 + γa1x + γa2x

2 + · · · = 0 (5.1)

which yields

a1 = −γa0

a2 =
1− γ

4
a1

a3 =
2− γ

9
a2

a4 =
3− γ

16
a3 (5.2)

or, in general,

aj+1 =
j − γ

(j + 1)2
aj

which means

a1 = −γ

1
a0

a2 = − (1− γ)γ
(4)(1)

a0

a3 = − (2− γ)(1− γ)γ
(9)(4)(1)

a0

a4 = − (3− γ)(2− γ)(1− γ)γ
(16)(9)(4)(1)

a0

· · · (5.3)

which finally is

aj = −
Πj−1

k=0(k − γ)

Πj
k=1(k2)

a0

and

aj+1 = −(j − γ)
Πj−1

k=0(k − γ)

(j + 1)2Πj
k=1(k2)

a0 =
j − γ

(j + 1)2
aj

which implies that

aj+1

aj
=

j − γ

(j + 1)2
∼ 1

j

as j →∞. This is the behaviour of y = ex, which would
overpower the previous Ansatz, so we must have trunca-
tion through an appropriate choice of γ (i.e., γ = n∗).

VI.

If γ were an integer, then as j increased, and passed
into γ we would have a zero numerator in the expression

aj+1 =
(j − γ)
(j + 1)2

aj

and all higher a’s would be zero! But(α

2

)2

=
2µε

h̄2 = −2µE

h̄2

so, from Equation 3.6 we have

k2 − 1
4

= `(` + 1)

k2 − 1 = 4`2 + 4`

k = 2` + 1

so

k − 1
2

=
2` + 1− 1

2
= ` (6.1)

and therefore Equation 3.3 and its successors tells us that
using Equation 6.1 we have(

n∗ − k − 1
2

)
= n∗ − ` =

2µZe2

h̄2α

implies

α =
2µZe2

h̄2(n∗ − `)

(α

2

)2

= −2µE

h̄2 =
4µ2Z2e4

4h̄4(n∗ − `)2

i.e.,

E = − µZ2e4

2h̄2(n∗ − `)2

which is the famous Rydberg/Bohr formula.



5

[1] l2h:Laguerre.tex


	University of Connecticut
	OpenCommons@UConn
	August 2006

	Laguerre Polynomials, an Introduction
	Carl W. David
	Recommended Citation


	tmp.1154703382.pdf.RXK6C

