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QUORUM SENSING IN PLANT-PATHOGENIC

BACTERIA
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■ Abstract Quorum sensing (QS) allows bacteria to assess their local population
density and/or physical confinement via the secretion and detection of small, dif-
fusible signal molecules. This review describes how phytopathogenic bacteria have
incorporated QS mechanisms into complex regulatory cascades that control genes for
pathogenicity and colonization of host surfaces. Traits regulated by QS include the
production of extracellular polysaccharides, degradative enzymes, antibiotics, sidero-
phores, and pigments, as well as Hrp protein secretion, Ti plasmid transfer, motil-
ity, biofilm formation, and epiphytic fitness. Since QS regulatory systems are often
required for pathogenesis, interference with QS signaling may offer a means of con-
trolling bacterial diseases of plants. Several bacterial pathogens of plants that have
been intensively studied and have revealed information of both fundamental and prac-
tical importance are reviewed here:Agrobacterium tumefaciens, Pantoea stewartii,
Erwinia carotovora, Ralstonia solanacearum, Pseudomonas syringae, Pseudomonas
aeruginosa, andXanthomonas campestris.

INTRODUCTION

The term quorum sensing (QS) describes a well-understood mechanism of bacte-
rial cell-cell communication and conveys the concept that certain traits are only
expressed when bacteria are crowded together [reviewed in (61)]. This allows them
to act in a coordinated manner and reinforces the notion that individual bacteria
benefit from co-operative group behavior to survive, compete, and persist in nature
or to colonize a particular host. QS involves the exchange of low molecular weight,
diffusible signal molecules between members of a localized population. If signal
production by the population is greater than its loss by diffusion or inactivation,
the signal accumulates to a threshold level and activates cognate receptor proteins.
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These in turn may trigger widespread changes in gene expression in members of the
population. A key requirement for quorum sensing is, therefore, growth of cells in
close proximity, as in a biofilm or when confined in an enclosed, diffusion-limited
environment. Either condition allows localized signal build-up to occur.

The paradigm for QS, historically called autoinduction (106), is the signal-
mediated activation of bioluminescencelux genes in the symbiotic bacteriumVib-
rio fischeri, which produces light when colonizing the light organs of certain marine
animals. The autoinducer (AI) signal forV. fischeriQS isN-(3-oxo-hexanoyl)-
L-homoserine lactone (3-oxoC6HL), which is made by the LuxI synthase from
S-adenosyl methionine and 3-oxo-hexanoyl-acyl carrier protein (102, 110, 145).
This signal molecule moves freely across bacterial membranes. Inside the bac-
terium, 3-oxoC6HL interacts with its receptor, LuxR, to form an active complex
with increased affinity for a palindromiclux box element found in the promoter
regions of genes in thelux regulon. TheluxI andluxRgenes themselves are part
of this regulon and are therefore autoregulated by a dual positive feedback mecha-
nism [reviewed in (135)]. The remaining genes of thelux regulon encode enzymes
required for luminescence [reviewed in (7, 56, 143)].

N-acyl-homoserine lactones (AHLs), such as 3-oxoC6HL, are the most com-
monly reported type of quorum sensing signals. Over 50 species of Proteobac-
teria, including plant-associated species, produce AHLs (45, 57, 147, 158). Other
bacterial groups use different types of compounds to regulate population density-
dependent behaviors. These include the furanosyl borate diester AI-2 signal of
V. harveyi (20), γ -butyrolactone inStreptomyces(159), oligopeptides in vari-
ous gram-positive species (44, 78, 107), cyclic dipeptides in several gram-negative
species (67), and bradyoxetin inBradyrhizobium japonicum(87). The plant patho-
genic bacteriaRalstonia solanacearumandXanthomonas campestrisuse unique
fatty acid and butyrolactone derivatives as QS signals to regulate production of
pathogenicity factors (6, 21, 49).Salmonella, which does not synthesize AHLs,
nevertheless has a receptor for them (SdiA), enabling it to detect and respond
to nearby AHL-producing bacteria (98). Thus, the ability to “listen” to the quo-
rum sensing signals of other species may constitute an important aspect of in-
terpopulation communication and community structuring in natural environments
(30, 116, 129, 134). However, the mere presence of QS signal synthase orthologs
and/or detection of QS signal activity in heterologous reporter systems is not suf-
ficient to define a bona fide QS system. An authentic QS signaling system should
also feature a cognate signal receptor/regulator and target genes expressed in a
population density-dependent manner (154, 156).

A wide range of behaviors is affected by AHL-mediated QS regulation, includ-
ing bioluminescence, swarming motility, biofilm formation, cell division, stress
survival, horizontal DNA transfer, and the synthesis of colonization and virulence
factors, such as extracellular polysaccharides (EPS), surfactants, antibiotics, and
extracellular enzymes (57, 147, 158). Of particular interest to plant pathologists is
the fact that the expression of pathogenicity factors in a variety of plant pathogens is
critically dependent on QS (31, 117, 147). InPseudomonas aeruginosa, one of the
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best-studied model systems for QS, AHL perception directly or indirectly affects
the expression of over 200 genes (150), suggesting that such regulation could be
important for many cryptic as well as observed behaviors. Although the basic mech-
anisms of AHL-mediated QS are generally well understood in vitro, the dynamics
of signal sensing and regulation in nature are more difficult to define, and new levels
of complexity are now surfacing. For example, different bacteria produce different
AHLs, and a given species may produce more than one AHL. The acyl side chains
of known AHL molecules vary in length (4–18 carbons), can contain double bonds,
or are frequently substituted with a carbonyl or hydroxyl group at the C3 position
(54, 147). In addition, QS regulation may be quite strain-specific, with different
strains making substantially different sets of AHLs, or no detectable AHLs at all
(15, 46). A bacterium may have two or more AHL receptors, each responding to
different AHLs (112, 157, 163), and the effects of one AHL can be dominant over
another (112, 130). The amount of AHL synthesized is often, but not always, sub-
ject to positive feedback regulation via the cognate AHL receptor (61). Moreover,
the amounts and kinds of AHLs actually produced by bacteria can depend markedly
on environmental conditions (14, 160). Finally, the ability of cells to respond to
a “threshold” concentration of an AHL may depend on various modulatory fac-
tors (35, 53, 69), global physiological regulators such as RpoS (81, 104, 151, 155),
RsmA (18), and Crp (43), or environmental sensing systems, such as GacS/GacA
(163). These complexities make it very difficult to predict from laboratory studies
how QS regulation actually works for bacteria in natural environments.

In this review, we focus primarily on QS regulation mediated by AHLs and
fatty acids in several plant pathogenic bacteria to provide a perspective of how
traits governed by QS contribute to bacterial fitness and pathogenesis. In addition,
we consider the ability of host plants to influence AHL-mediated QS in plant-
associated bacteria. Finally, we discuss the biological relevance of bacterial QS
in natural habitats, including plant hosts. For reviews and recent articles on the
role of quorum sensing in beneficial or symbiotic plant microbe-relationships see
(88, 115, 137, 147, 152, 157).

QUORUM SENSING IN PLANT PATHOGENIC BACTERIA

QS regulation has a significant role in the biology of plant-microbe interactions
(117) and several studies on plant pathogenic bacteria have contributed at a fun-
damental level to our present understanding of QS mechanisms. For example, the
first X-ray crystal structures for key QS proteins resulted from research on EsaI,
a LuxI homolog fromPantoea stewartiisubsp.stewartii(145), and TraR, a LuxR
homolog fromAgrobacterium tumefaciens(142, 162).

Crown Gall

A. tumefacienscauses crown gall tumors in plants by transferring T-DNA from
its tumor-inducing (Ti) plasmid into the chromosome of a plant cell (164). The
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resulting tumors produce metabolites called opines, which serve as a novel source
of nutrients for the pathogen (34). Both AHLs and a subclass of opines, the con-
jugal opines, act as chemical signals to induce the transfer of the resident Ti plas-
mid to plasmidless agrobacteria frequently cohabiting the gall (47). QS control is
mediated by TraR, a LuxR-type AHL receptor that responds most strongly toN-3-
oxo-octanoyl-HL (3-oxoC8HL) (161) for its activity. This AHL is synthesized by
the LuxI homolog TraI (60, 68). Transfer of the nopaline-type Ti plasmid, pTiC58,
depends on the phosphodiester opines, agrocinopines A and B (47), whereas the
transfer of octopine-type Ti plasmids requires octopine (1, 164). The agrocinopines
interact with the AccR repressor to derepress both the coregulated agrocinopine
catabolic locus (acc) and the linked, divergently transcribedarc (agrocinopine
regulation of conjugation) operon that containstraRnop (118, 119). In the octopine
strains, octopine interacts with the OccR transcription factor to activate an operon
comprised of the octopine catabolic genes (occ), an ABC-type transport system
and traRoct (58, 60). The TraR regulon of both types of plasmids includes two
linked tra operons, a separatetrb operon, and therepoperon for the replication of
the Ti plasmid (1, 48, 83, 84). Together, thetra andtrb operons encode the struc-
tural components for Ti plasmid conjugal transfer. In each system,traR is part of
a separate transcription unit near thetra gene cluster, whereastraI is the first gene
in thetrb operon (59, 61, 68) (Figure 1). Interestingly, the genome sequence forA.

Figure 1 Quorum sensing regulation of the Ti plasmid conjugal transfer genes in
A. tumefaciens. Opines (triangles) induce synthesis of the TraR response regulator
(open ovals) via AccR (circle). In the presence of high concentrations of AHL signals
(pentagons), produced by the TraI synthase (rectangle), TraR activates thetra regulon.
TraM (closed oval) titrates the activity of TraR at high AHL concentrations.
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tumefaciensstrain C58 reveals no additionalluxI homologue genes, but features
a number of genes with motif structures of the LuxR family of transcription fac-
tors (see website for the Laboratory for Bioinformatics, Institute of Computing,
University of Campinas, Brazil, http://cancer.lbi.ic.unicamp.br/agroC58/).

Considerable progress has been made toward understanding the molecular and
structural basis of QS control of Ti plasmid conjugal transfer. It is believed that
nascent TraR protein requires the AHL cofactor to serve as a scaffold for proper
protein folding, because AHL does not associate with prefolded TraR (166). This
is consistent with the fact that the AHL ligand is deeply embedded within the
N-terminal signal-accepting domain of TraR (142, 162). In the absence of AHL,
TraR is subject to rapid proteolytic degradation (166). In the nopaline strain C58,
ApoTraR appears to be plasma membrane-associated and dissociates from the
membrane when complexed with AHL (126). AHL-TraR dimerizes and posi-
tions the C-terminal helix-turn-helix domain to bind to the major groove of the
18-bptra-box recognition site.tra-boxes are found immediately upstream of the
traAFB, traCDG, traI-trb, andrepoperons (126, 142, 162, 165). TraR also activates
the traI-trb operon, thereby creating a positive feed-back loop fortraI (60, 68).
Active TraR also stimulates the expression of thetraM gene, which encodes a small
anti-activator with affinity for the C-terminal domain of TraR (53, 69). TraM is
thought to “titrate” TraR to prevent Ti plasmid transfer until TraR levels exceed
those of TraM (119, 136). TraR also controls the expression of the Ti plasmid’s
rep gene system and consequently increases its copy number at high population
densities (53, 83) (Figure 1). In addition, the conjugation of certain octopine-type
Ti plasmids is suppressed by mannopine opines (16, 108). This is due to the inhibi-
tion of TraR activity by TrlR, which appears to be a C-terminally truncated form of
TraR that forms a nonproductive TrlR/TraR heterodimer (16, 108). QS regulation
in A. tumefaciensis also governed by an active signal-turnover process mediated by
theattM-encoded AHL lactonase, which has structural and functional similarity to
the AiiA lactonase ofBacillus cereus(38, 39). The concentration of 3-oxo-C8HL
declines rapidly at the onset of stationary phase, as does the frequency of conjugal
Ti transfer. Interestingly,attM is part of a previously characterized locus involved
in bacterial attachment to plant cells (94).

Ti plasmids use both opines and QS to regulate Ti plasmid conjugation and
replication. This suggests that the opine-dependent regulation of conjugation pro-
vides a major biological advantage to either the bacterium or the Ti plasmid, or
both. It is attractive to speculate that in young tumors the colonizing agrobacte-
ria have sufficient nutrients and consequently favor rapid growth over Ti plasmid
maintenance. In this regard, it is well known that crown galls contain a signif-
icant proportion of agrobacteria that are avirulent as a result of plasmid loss or
rearrangement, and that such strains seem to have a definite growth advantage (11).
However, when nutrients become limiting and the bacterial population densities
are higher, the QS-dependent activation of conjugation may allow the bacteria
to regain the plasmid. This mechanism would confer an advantage not only to
the individual recipient cell, but to the species overall, because it would increase
the potential of migratory cells to initiate new infections. The higher plasmid copy
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number would also increase the expression of the opine catabolic genes and enable
more efficient use of the available opines (83).

Stewart’s Wilt of Corn

P. stewartiisubsp.stewartii(Pnss; synon.Erwinia stewartii) causes Stewart’s bac-
terial wilt and leaf blight of sweet corn and maize. This disease is transmitted
by the corn flea beetle,Chaetocnema pulicaria. Infested beetles feed on emerg-
ing corn seedlings and introduce the pathogen into the xylem and intercellular
spaces of the leaves. Once in the plant,Pnssgrows in the apoplast of young leaves
causing “water-soaked” lesions and colonizes the xylem vessels leading to subse-
quent wilting (12). Vascular occlusion is due to the accumulation of large amounts
of EPS on pit membranes (12). The biosynthetic pathway for EPS synthesis is
encoded by thecpsgene cluster (24), which is related in organization and func-
tion to typical group I capsule (M-antigen) biosynthetic gene clusters in other
enteric bacteria. Mutations in thecpsA-Mlocus lead to loss of wilting and sys-
temic movement (24), thus establishing EPS as a primary virulence factor. Thecps
genes ofPnss, Escherichia coli, andErwinia amylovoraare similarly regulated by
the Rcs (regulator of capsule synthesis) two-component signal transduction sys-
tem (64, 74, 121). The plasma-membrane spanning sensory protein RcsC detects
environmental signals, possibly desiccation and/or osmolarity (133), and signal
perception results in phosphorylation and activation of the RcsB response regula-
tor (64). An accessory protein, RcsA, is also needed for full induction of thecps
genes, presumably by forming a more effective RcsA/RcsB activation complex
(64). EPS synthesis inPnssstrain DC283 is regulated in part by the EsaI/EsaR
QS system. The AHL synthase, EsaI, catalyzes the production of 3-oxoC6HL
and minor amounts of 3-oxoC8HL (9). Interestingly, theesaI gene is constitu-
tively expressed and not subject to EsaR-mediated autoregulation. Mutations in
theesaIgene have pleiotropic effects, eliminating AHL production, EPS synthesis,
and virulence, whereas mutations in theesaRgene lead to constitutive, growth-
independent hypermucoidy (9). In contrast, the wild-type strain produces EPS in a
population density-dependent manner, with measurable levels detected primarily
at population densities>108 cells/ml (10).

The fact thatesaRmutants are fully induced for EPS synthesis at low cell den-
sity indicates that EsaR acts as a negative regulator of thecpsgenes in the absence
of AHL (10). Genetic studies and in vitro DNA binding experiments using purified
EsaR and a syntheticlux box-like DNA fragment both showed that EsaR functions
as an autorepressor of theesaRgene (101, 126). It is not yet known how EsaR
mediates repression of thecpsgenes, because experiments to test the most logical
regulatory scenarios have been inconclusive. Specifically, EsaR failed to bind to
DNA within thecspApromoter region, which lacks a potentiallux-box (T. Minogue
& S. von Bodman, unpublished); it has no effect on RcsA/B binding at thecpsA
promoter in competition DNA binding experiments (F. Bernhard, personal com-
munication); and it did not appreciably affect expression of any of thercsgenes.
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Recently, M. Merighi & D. Coplin (unpublished) found that the Hrp regulon
in Pnssis also partially controlled by the EsaI/EsaR QS system. The Hrp type
III secretion system is required for growth ofPnssin the intercellular spaces of
leaves and xylem and is most likely responsible for the water-soaking symptoms
on young corn leaves (23, 52). Thehrp secretion andwtseffector genes are con-
trolled by a regulatory cascade consisting of the HrpX/HrpY two-component signal
transduction system, the NtrC-like transcriptional enhancer HrpS, and the HrpL
alternative sigma factor (97). These function as a cascade where HrpY activates
hrpS, HrpS activateshrpL, and HrpL controls expression of thehrp andwtsgenes.
An esaImutant was found to be greatly reduced in water-soaking ability on corn
seedlings and unable to elicit a hypersensitive response (HR) in tobacco. This
mutant phenotype was corrected by ectopic overexpression ofhrpS, but nothrpY.
In addition, the expression of ahrpJ-uidAreporter gene fusion was shown to be
cell-density dependent and activated when cultures were grown to about 3× 108

CFU/ml. Moreover, the expression of severalhrp secretion and effector genes was
reduced by 100–1000-fold in anesaImutant background, but was normal in an
esaI/esaRdeletion mutant. ThehrpSandhrpLpromoters were similarly regulated,
but expression of thehrpXYpromoter was not affected. These findings suggest that
EsaR mediates the effect of theesaImutation and acts, either directly or indirectly,
as a repressor ofhrpS.

When inoculated on susceptible sweet corn seedlings, theesaImutant strain fails
to induce wilting and causes only very weak water-soaking (10). This was expected
because this strain has a functional copy of EsaR that represses EPS synthesis
and Hrp-mediated water-soaking. In contrast, seedlings inoculated with the wild-
type strain are killed. Somewhat surprisingly, theesaRmutant and theesaI/esaR
double deletion mutant are significantly less virulent than the wild-type strain,
even though they produce excessive amounts of EPS (10) and expresshrp genes
(M. Merighi & D. Coplin, unpublished). These findings clearly indicate that QS
control of pathogenicity genes is important. The reduced virulence of these mutants
emphasizes that early production of some virulence factors, such as EPS, may be
counterproductive unless they are made at the proper time and location during the
infection. Recent studies by von Bodman and coworkers suggest that EPS synthesis
may be part of a multistep host invasion process. In vitro attachment assays with the
wild type and QS mutants indicated that EPS synthesis interferes with the ability
of Pnssto attach to plastic surfaces (80). Specifically, wild-type strain DC283
appeared to attach at a low level, perhaps only transiently; the non-mucoidesaI
andcpsmutant strains attached firmly in substantially greater numbers than the
wild type; and the hypermucoidesaI/esaRdouble mutant lost its ability to adhere
to a surface. The same attachment deficiency could be artificially induced in the
esaImutant strain through exogenous addition of AHL, the degree of attachment
being inversely proportional to amount of AHL supplied (M. Koutsoudis & S. von
Bodman, unpublished). In plant assays, similar behavior was observed; theesaI
mutant remained localized at the site of infection, whereas the wild-type strain
moved at an impressive rate through the vascular system (100). Interestingly, the
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hypermucoidesaI/esaRdouble mutant initially remained at the site of inoculation,
but eventually dispersed within the plant tissue, although at a much reduced and
more variable rate than the wild-type strain. These data suggest that invasion by the
esaImutant strain may be impaired after the initial attachment stage. In contrast,
invasion of the plant by the hypermucoid1esaR/esaIstrain was delayed and
more variable. The electron microscopy studies of thePnsshost invasion process
reported by E.J. Braun (12) 20 years ago highlight some of the same events and
seem quite consistent with the step-wise colonization process outlined above.

The related pantoea,Erwinia herbicolapv. gypsophilae(synon.Pantoea ag-
glomerans), which causes galls on gypsophila, produces C4HL (I. Barash, personal
communication), but the closely related fireblight pathogen,E. amylovora, which
shares many mechanisms of virulence withP. stewartii, has not been reported to
make any AHLs in culture.

Soft Rot Erwinias

QS inE. carotovorasubsp.carotovora(Ecc; synon.Pectobacterium) controls the
population density-dependent expression of pathogenicity factors, such as extra-
cellular enzymes and the Hrp secretion system, as well as carbapenem antibiotic
production [reviewed in (88, 147, 148)]. The primary AHL, 3-oxoC6HL, is pro-
duced by the LuxI-like signal synthase CarI (also called ExpI). Mutants defective
in carI do not produce carbapenem, pectolytic enzymes, endoglucanases, and pro-
teases and fail to secrete harpin. They are, therefore, completely nonpathogenic
(5, 17, 27, 72, 120). The Car QS system directly regulates the genes for production
of the antibiotic carbapenem, which constitute thecarA-H biosynthetic operon
(96). A luxR-like gene,carR, is located 150 bp upstream ofcarA (96) and is
not linked tocarI. Mutations in eithercarRor carI block carbapenem synthesis
(17, 72, 95), while mutations incarI, but not incarR, affect exoenzyme production.
Ligand-free CarR forms a functional dimer that is capable of binding to thecarA
promoter, albeit with low affinity. In the presence of the cognate AHL, however,
CarR forms multimeric complexes that bind the target promoter more efficiently,
even though a clearly definedlux box is lacking (146, 147). LikeA. tumefaciens
TraR, CarR is stabilized by AHL (146). In addition, thecarR gene is autoregu-
lated. The gene for another AHL receptor,expR, is located adjacent tocarI and
convergently transcribed (2, 95). However, no genes directly regulated by ExpR
have been identified andexpRmutations have only minor effects on exoenzyme
production.

Studies by Nasser et al. (105) have shown thatE. chrysanthemi(Ech) strain
3937 makes three different AHLs, 3-oxoC6HL, C6HL, and C10HL, and thatEch
has a homologous set of linkedexpI andexpRgenes and a second, unidentified
AHL synthase. ExpI is responsible for the synthesis of 3-oxoC6HL and C6HL.
Disruption of eitherexpIor expR has very little effect on the overall production
of pectolytic enzymes in vitro, even though the ExpR regulator binds to several
different Ecc andEch pelpromoters in the absence of AHL. It is unclear what
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function the ExpI/R QS regulatory pair may have inEch. One possibility is that re-
dundant AHL/response regulator combinations may control exoenzyme synthesis
in these two erwinias, thereby accounting for the lack of a dramatic effect ofexpR
mutations.E. carotovorasubsp.betavasculorumstrain 168 also produces AHLs
and contains a set of QS regulatory components designated EcbI and EcbR. Dis-
ruption of theecbIgene eliminates AHL production and leads to loss of antibiotic
synthesis and reduced pectate lyase activity (25).

In contrast to the relatively simple regulation of carbapenem biosynthesis, the
population density-dependent control of extracellular virulence factors inEcc is
only one part of a complex regulatory hierarchy in which the components may have
different roles at different stages of infection or growth (Figure 2). The effects of
QS appear to be mediated in part by the RsmA-rsmB (regulator of secondary
metabolism) negative regulatory system (17, 29, 79), which is conserved inE.
coli (71) and manyErwinia andPseudomonasspp. (89, 113). The key factor in
this pathway is RsmA, a small posttranscriptional regulator that binds to specific
mRNAs thereby blocking ribosome binding and promoting RNA decay. Mutants
of rsmAoverproduce degradative enzymes, are hypervirulent, and cause a HR in
tobacco. These phenotypes are independent of AHL production, indicating that an
rsmAmutation is epistatic tocarI. ThersmBgene encodes an untranslated RNA
species that complexes with RsmA to neutralize its activity (85). Overproduction
of rsmBovercomes negative regulation by RsmA.

The RsmA-rsmBsystem is subject to additional upstream regulation (Figure 2).
RsmC and KdgR stimulatersmAexpression and repressrsmB(28, 85), whereas the
ExpA/ExpS two-component system (homologous to GacA/GacS) activatesrsmB
and repressesrsmA (70). In addition to affectingrsmA expression, KdgR acts

Figure 2 Schematic representation of the complex regulatory network involved in
controlling exoenzyme synthesis inE. carotovorasubsp.carotovora. Arrow heads
indicate positive regulation and flattened ends denote negative regulation. Modified
from (148) according to recent findings of Chatterjee et al. (18).
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directly as a general repressor of the genes involved in pectin and oligogalactur-
onide catabolism (86). Another regulator, HexA (hyperproduction of exoenzymes),
negatively regulates levels ofrsmBand RpoS (103). Since RpoS is required for
activation ofrsmA, one possible function of the Rsm regulatory pathway may be
to turn down exoenzyme synthesis during stationary phase or periods of stress.

There is genetic evidence indicating that QS affects the levels of RsmA protein.
Chatterjee and associates (17) found thatrsmAmutants do not require AHL for ex-
oenzyme production, and recently they reported that overproduction ofrsmBRNA
also overrides the need for AHL (18). Moreover,rsmBmutants do not produce
any exoenzymes, even whencarI is overexpressed. Levels ofrsmAtranscripts are
enhanced in acarI mutant, whereas those ofrsmCare unchanged (18, 79). Like-
wise, anrsmA-lacZreporter gene fusion is enhanced in acarI mutant, whereas
the expression of anrsmB-lacZfusion is unaffected (18). It is not clear how AHL
repressesrsmAtranscription because a cognate QS response regulator for exoen-
zyme production has not been identified and the two most likely candidates,carR
andexpR, seem to have little effect onrsmAexpression (2). This suggests that
QS control ofrsmAmay be indirect and a third response regulator may directly
govern the expression of some virulence genes. The complex upstream regulation
of the RsmA system emphasizes that numerous conditions must be met before
pathogenicity factors are produced in planta and that QS serves as only one switch
among many. It is also significant that different bacteria can use the same regula-
tory proteins in different ways to accomplish this. For example, the QS systems of
P. aeruginosa(described below) are also integrated with RsmA regulation, but in
this species RsmA instead controls production of AHL (113).

It is easy to envision whyEcc would make carbapenem late in infection in
order to protect its food supply from other bacteria that might try to colonize the
rotted tissue (4). However, the value of QS regulation of pathogenicity genes in
soft rotters is less clear, and it may play different roles in necrogens and biotrophs.
The popular explanation for delayed production of cell wall-degrading enzymes
is that they can release pectic wall fragments that can elicit host defense responses
prematurely. The pathogen may therefore need to attain sufficient numbers before
risking detection (36, 120). This theory is consistent with an experiment in which
carI was introduced into transgenic tobacco plants so that they made 3-oxoC6HL
and presumably causedEccto produce pectic enzymes early in infection (90). The
increased resistance of the transgenic plants to soft rot suggests that such early
enzyme production might be detrimental to the pathogen.

Epiphytic Survival of Pseudomonas syringae Pathovars

AHLs are produced by strains of many phytopathogenic pseudomonads, includ-
ing P. corrugata, P. savastanoi, andP. syringaepvs.syringae, tabaci, angulata,
tomato, coronafaciens, andmaculicola(15, 42). The LuxI and LuxR homologs
have been identified in some of these bacteria (42, 46, 76, 147). InP. syringaepv.
syringaestrain B3A, inactivation of theahlI AHL synthase gene results in loss
of AHL production, altered colony morphology, and reduced epiphytic viability
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(42). Recent studies onP. syringaepv. syringaeB728a by Lindow and coworkers
(personal communication) provide a broader perspective of the role of QS in epi-
phytes. In this strain, as in several other plant pathogenic bacteria, theluxI/luxR
homologous genes,ahlI andahlR, are convergently transcribed andahlI exhibits
autoinduction in response to the AHL signal (46). The AhlI synthase generates
primarily 3-oxo-C6HL andahlI is regulated at two or more levels. First,ahlI expres-
sion is dependent on the GacA/GacS two-component signal transduction pathway,
which is widely distributed among pseudomonads. Second, it is partially depen-
dent upon a novel regulator, AefR, (autoinducer and epiphytic fitness regulator),
which is a member of the TetR family of transcription factors. Expression ofahlI
is severely reduced, but not eliminated, in anaefRmutant strain, suggesting that it
acts as a positive regulator ofahlI, at least at low population densities. However,
at high population density, expression ofaefRis inhibited in an AHL-dependent
manner, effectively removing it from the pathway. In this manner, it may act as a
“governor” of QS behaviors.

AefR may play a pivotal role in epiphytic fitness (S. Lindow, personal commu-
nication). It does this by first inducing certain fitness genes during the initial phases
of colonization and then subsequently downregulating these genes at later stages
of colonization, when the cells have reached a “quorum.” Strain B728a does not
exhibit swarming motility at low densities, whereasaefRandahlRmutants, which
produce less AHL, are highly motile under these conditions. As a result, isolated
cells on a leaf surface are likely to be motile, possibly to facilitate discovery of a
favorable microhabitat, but become nonmotile when in sedentary aggregates. Both
aefRandahlRmutants were also deficient in production of EPS and hypersensitive
to oxidative stress in culture. Such phenotypes may well account for the greater-
stress sensitivity and decreased survival of these mutants on leaves. AHL-deficient
mutants of B728a also exhibited reduced virulence when examined at later stages
of infection in bean, showing water-soaking symptoms, but not subsequent tissue
maceration. Thus, AHL-mediated regulation appears to be important in differ-
ent ways at each stage of invasion. Preliminary evidence suggests that QS only
starts to operate after the bacteria have colonized the plant for a couple of days. By
monitoring anahlI::gfp reporter gene fusion in B728a cells on bean leaves, Lindow
and associates found that very few bacterial cells expressed the signal synthase
gene until two days after inoculation, and then expression increased with time.
This correlated well with the size of cell aggregates on the leaf, leading them to
propose that enhanced AhlI (and presumably AHL) synthesis is related to the in-
creasing proportion of cell aggregates that have achieved a threshold size at which
autoinduction is possible, i.e., a “quorum.”

Pseudomonas aeruginosa, a Pathogen of Both
Plants and Animals

P. aeruginosais an environmental generalist that can be isolated from diverse
habitats including water, soil, animals, and plants (109, 127). In humans, it is the
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leading cause of bronchiopulmonary infections in cystic fibrosis patients and noco-
somial infections in burn victims and immune-compromised individuals (55, 112).
In many plants, it is an opportunistic pathogen that causes soft rot.P. aeruginosa
is not only a well-studied model for QS, but it has recently been used in studies to
define universal virulence mechanisms across phylogenetic boundaries (127, 138).
Infiltration ofP. aeruginosaintoArabidopsisor injection into lettuce leaves causes
initial water-soaked lesions and chlorosis, followed by tissue maceration and sys-
temic infection (127). Analysis of various mutants with impaired virulence in
mouse,Arabidopsis, lettuce, nematodes, and insects identifiedgacA, gacS, lasR,
andmucDas genes that are necessary for full virulence in all hosts (127, 138).

P. aeruginosahas two AHL synthase/receptor pairs. The first gene pair,lasIand
lasR, controls the expression of the second, comprised ofrhlI andrhlR (112). The
LasI synthase produces 3-oxoC12HL, and RhlI catalyzes the synthesis of C4HL
(111, 147). QS regulation mediated by both LasR and RhlR is ultimately gov-
erned by the GacS/GacA two-component signal transduction system. Both LasR
and RhlR, along with their cognate AHLs, affect, either directly or indirectly, the
expression of over 200 genes (150), and control the expression of an arsenal of
extracellular virulence factors and secondary metabolites including elastase, exo-
toxin A, alkaline protease, chitanase, lectin, rhamnolipid, pyocyanin, phenazine,
hydrogen cyanide, superoxide dismutase, and catalase. Some of these factors con-
tribute to the growth of bacteria in planta (127, 138, 147).

Ralstonia solanacearum

R. solanacearumcauses a vascular wilt disease of several hundred plant species,
including tobacco, tomato, potato, and bananas. The pathogen can survive for
long periods as a resident in the soil and then infect plants through wounds and
openings formed by lateral root emergence. It must then penetrate the cortex of
the root, breach the suberized endodermal barrier, and finally enter the xylem
vessels. Once in the vascular system, it will colonize the entire plant, attaining
populations in excess of 1010 cells/cm length of stem tissue. The early stages of
infection may involve attachment, motility, and microcolony formation (73, 140).
After the bacteria invade the cortex, pectolytic enzymes disrupt the middle lamella,
enabling the bacteria to spread through the tissue and, together with Hrp effectors,
the enzymes release nutrients from host cells (33, 131). The plants eventually wilt
owing to the accumulation of bacteria and EPS in the xylem.

Most of the traits needed for infection and virulence are regulated by the Phc
(phenotype conversion) regulatory system in a population density–dependent man-
ner [reviewed in (32, 33, 131)]. PhcA, a LysR-type transcriptional regulator, is at
the center of a complex regulatory hierarchy and its activity is modulated by a
unique, volatile signal molecule, 3-OH palmitic acid methyl ester (3-OH PAME)
(13, 49).phcAmutants do not produce EPS, pectin methyl esterase, and endoglu-
canase, and they are hypermotile and exhibit increased production of polygalactur-
onase and siderophore. PhcA directly regulates endoglucanase and pectin methyl
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esterase production but interfaces with four other response regulators and two sen-
sors, which affect the remaining Phc-controlled traits. 3-OH PAME is synthesized
by thephcBencoded S-adenosyl methionine-dependent methyl transferase that
converts 3-hydroxypalmitic acid into a methyl ester (13, 50). 3-OH PAME then
acts as a signal for an atypical two-component regulatory system that posttran-
scriptionally modulates the activity of PhcA. This consists of a membrane-bound
sensor-kinase, PhcS, that phosphorylates PhcR, an unusual response regulator with
a C-terminal kinase domain in place of a DNA-binding domain (22). Mutations
that specifically inactivate the PhcR kinase domain create atransdominant allele
that constitutively represses the Phc regulon. This suggests that unphosphorylated
PhcR serves as a negative regulator of the Phc phenotype at subthreshold concen-
trations of 3-OH PAME. Subsequent phosphorylation of PhcR in response to the
signal ligand then inactivates it. Immunoblot and Northern assays have shown that
PhcR posttranscriptionally reduces the amount of PhcA available by an undefined
mechanism (131).

QS regulation may be important toR. solanacearumas it makes the transition
from life in the soil to that of a parasite. Low levels of 3-OH PAME lead to reduced
EPS and exoenzyme synthesis, but enhanced motility and siderophore production
(22). Conversely, inducing levels of 3-OH PAME promote PhcA activity, result-
ing in enhanced expression of EPS and exoenzymes and decreased motility and
siderophore synthesis. In this manner, the Phc regulatory system serves as master
control switch to turn off behaviors suited to free-living survival and to turn on those
needed for initial host contact, microcolony/biofilm formation, and pathogenesis.

Although the Phc pathway is present in mostR. solanacearumstrains, it is
apparently absent from most other plant pathogens. It was recently reported that
a phcAortholog in the nonpathogenic, facultative chemolithoautotrophRalstonia
eutropha (synon.Alcaligenes eutrophus) fully complementsR. solanacearum phcA
mutants (62). This species also appears to make a form of 3-OH PAME and contain
orthologs ofphcBandphcS.

The sequence of theR. solanacearumgenome reveals two pairs ofluxI/luxR
homologs (http://sequence.toulouse.inra.fr/R.solanacearum.html). One of these,
solI/solR, has been characterized (50). SolI catalyzes the synthesis of C6HL and
C8HL. Interestingly, the expression ofsolIandsolRis controlled by PhcA and RpoS
(50, 51). However, inactivation of thesolI/solRgenes does not affect virulence, EPS
synthesis, or exoenzyme production and the traits they regulate are not known.

Cell-to-Cell Signaling in Xanthomonas
campestris pv. campestris

X. campestrispv. campestris(Xcc) is a vascular pathogen that causes black rot of
cabbage and other cruciferous plants. The bacterium can multiply as an epiphyte on
leaves and then enter the vascular system through hydathodes during wet weather.
It multiplies in the xylem, initially causing typical V-shaped lesions and finally a
serious vascular wilt. Symptoms are due to blockage of the xylem by bacterial cells
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and xanthan gum, which is the major EPS produced by xanthomonads. Extracellu-
lar enzymes, such as endoglucanase and polygalacturnonase, and a Hrp secretion
system contribute significantly to the ability ofXcc to multiply in host tissue.
Two QS-like systems involving diffusible signaling factors control traits related to
pathogenicity and epiphytic fitness (6, 21, 122). The diffusible signal factor (DSF),
a fatty acid derivative, regulates exoenzymes and cyclic glucans inXccstrain 8004
(144), whereas the diffusible factor (DF), a butyrolactone produced byXccstraim
B24, regulates xanthomonadin pigment production (21, 121); both signals control
EPS synthesis [reviewed in (32, 147)]. Most of the known pathogenicity genes in
Xcc, including thegumgenes for xanthan gum synthesis, are coordinately regulated
by the Rpf system (regulation of pathogenicity factors). Ninerpf genes (rpfA-I)
are linked within a 22.1-kb region, and transposon-induced mutations within this
region abolish pathogenicity, exoenzyme production, and EPS synthesis (6, 139).
Among these genes,rpfC andrpfG encode a two-component regulatory system
(40),rpfAencodes an aconitase with a possible function in iron homeostasis (153),
andrpfB and rpfFare autoregulatory genes involved in production of the novel
signal molecule DSF (6). RpfB is predicted to function as a long-chain fatty acyl
CoA ligase and RpfF has some structural features of enoyl CoA hydratases. The
structure of DSF is not known. Early work suggested that DSF is a fatty acid deriva-
tive, not an AHL (6), whereas recent preliminary NMR studies are consistent with
it containing a butyrolactone ring (M. Dow, personal communication). This would
make DSF somewhat similar in structure to AHLs, which are N-substitutedγ -
butyrolactones. MostX. campestrisstrains produce DSF, but the amount varies
with strain and pathovar (6). DSF levels peak in early stationary phase cultures
and then disappear. Endoglucanase and protease production parallel DSF levels,
but supplementation of log phase cultures with DSF does not cause early activation
of protease gene expression or increase DSF synthesis.

The rpfHCG operon encodes the putative receptor system for DSF. RpfC is a
hybrid two-component regulatory protein with domains typical of both a sensor
kinase and response regulator but it features an additional C-terminal histidine
phosphotransferase (HPt) receiver domain (132, 139). RpfH is homologous to
the trans-membrane sensor domain of RpfC and may stabilize RpfC in the cell
membrane (132). The response regulator, RpfG, has a typical input domain attached
to an HD-GYP domain (132). Proteins with an HD-GYP domain are believed
to be phosphodiesterases involved in cyclic diguanylate signaling and typically
contain Gly-Gly-Asp-Glu-Phe and Glu-Ala-Leu motifs (3). Consequently, RpfG
may indirectly control EPS and exoenzyme synthesis by governing the synthesis
or turnover of cyclic di-GMP (26).

The second QS-like system inXcc strain B24 uses a similar diffusible factor
(DF) to control pigment (xanthomonadin) and EPS synthesis (122, 124). Non-
pigmentedpigB mutants cannot synthesize DF, make fourfold less EPS, cause
fewer lesions on cabbage, and are impaired in epiphytic survival (123). DF has
been purified and structural analysis indicates that it may be 2-(2-methyl-3-oxo-
butyl)-butyrolactone (21). DF levels plateau in stationary phase. Although similar
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in structure, DF and DSF are clearly distinct compounds because they differ in
biological activity and chromatographic mobility (124). A subsequent study has
shown thatpigB and DF are needed for epiphytic survival because normal xan-
thomonadin production is critical for protection against UV light (125). However,
the effect of apigBmutation on the rate of hydathode colonization is primarily due
to changes in EPS production, rather than to lower epiphytic populations (123).

From surveys of various plant-associated, rhizosphere and soil bacteria, it ap-
pears that AHL signaling is very rare in xanthomonads (15, 75), which have come
to rely on butyrolactones instead. At present, the only other xanthomonad known
to have the Rpf system for production and detection of DSF isX. oryzaepv.oryzae
(19). In this pathovar, strains with mutations in a gene homologous torpfF are
weakly virulent, do not make DF, and grow poorly under low iron conditions, but
still produce normal levels of EPS and xylanase (19). This implies thatrpfF is
involved in controlling an iron-uptake system inX. oryzaepv. oryzaeand that a
defect in this system may cause the decreased virulence ofrpfF mutants.

Analysis of the genomic sequence ofXylella fastidiosa(41), a fastidious vascu-
lar pathogen, has revealed homologs ofrpfF, rpfB, rpfC, andrpfG and a set of EPS
biosynthetic genes that are similar to those for the production of xanthan gum. In
addition to occupying a similar niche and possibly sharing virulence mechanisms,
this pathogen may have also retained (or acquired) similar genes for regulating
pathogenicity.

HOST PLANT MECHANISMS FOR DEALING
WITH QUORUM SENSING

Pathogenic bacteria depend quite significantly on QS regulation to coordinate
their colonization and infection of plant hosts. Therefore, it seems relevant to ask
if plants can take advantage of this dependency. For example, plants might be
able to disrupt QS in pathogens by enzymatically destroying their QS signals or
by synthesizing compounds that mimic these QS signals to confuse the pathogen.
Alternatively, plants might be able to detect the pathogen’s QS signals and use
this as information to trigger various defense responses appropriate to the kinds
and amounts of signals detected. At present, there are no reports to indicate that
plants have the ability to produce compounds that specifically inhibit the synthe-
sis of bacterial QS signals. However, a significant percentage of soil bacteria do
have enzymes for degrading or inactivating AHLs (8, 37, 39, 82, 116, 128, 149).
The best studied of these enzymes is AiiA, a lactonase fromBacillus cereusthat
opens the lactone ring of all AHLs tested, reducing their potency as signals by
about 1000-fold (39). Interestingly, when AiiA was expressed in transgenic to-
bacco and potato, the plants became highly resistant to infection byE. carotovora
(38), which depends heavily on 3-oxo-C6-HSL-mediated QS for pathogenicity.
Thus, destruction or inactivation of AHL signals in situ could be a useful strategy
for engineering disease-resistant plants. However, the limited evidence available
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suggests that AHLs are not degraded substantially by plant enzymes, at least in the
rhizosphere of soil-grown plants. It was observed that AHLs produced by mem-
bers of a natural tomato rhizosphere community were able to activate AHL reporter
cells on the root surface even when the reporter cells were some distance from the
AHL-producing cells (134). Thus it appears that AHLs can diffuse broadly over
root surfaces, perhaps in the mucigel layer (134). Such results are consistent with
an earlier report of interpopulation AHL signaling in the rhizosphere of field-grown
wheat (114). Perhaps nonspecific destruction of QS signals by plant hosts would
adversely affect not only pathogens, but valuable symbionts as well, so that more
specific mechanisms of disease resistance would be favored by natural selection.

There is now good evidence that higher plants, including pea, rice, tomato, soy-
bean, andMedicago truncatula, secrete various compounds that act like (mimic)
bacterial QS signals (141). Such “signal-mimic” compounds may provide plants
with important tools to disrupt or manipulate QS regulation in associated bacte-
ria (8). The first QS signal-mimic compounds were discovered in a marine red
alga,Delisea pulchra(63). The active compounds were shown to be a set of halo-
genated furanones that are structurally similar to AHLs, interact specifically with
AHL receptors (91, 92), inhibit AHL-mediated QS in many bacteria (63), inter-
fere with biofilm formation (66), and substantially alter the structure of natural
bacterial communities on the algal surface in marine environments (77). Higher
plants also produce signal-mimic compounds that can inhibit bacterial responses
to an added AHL signal. However, in contrast to the strictly inhibitory activities of
the furanone mimics fromDelisea, many of the signal-mimics from higher plants
stimulate AHL-induced QS behaviors (141). The plant compounds have not yet
been chemically identified, but most have different solvent-partitioning properties
than bacterial AHLs (141). Pea andM. truncatulaappear to secrete at least a dozen
different AHL signal-mimics (141; P. Gao, M. Teplitski, W.D. Bauer, unpublished).
M. truncatulaseedlings have also been reported (93) to produce compounds that
inhibit the ability ofVibrio harveyito respond to AI-2, its furanosyl borate diester
QS signal (20). A broad range of bacterial species carry a homolog of the AI-2 syn-
thase, LuxS, and produce AI-2 or similar substances that can activate QS-regulated
luminescence inV. harveyi(99). It is not yet clear whether these species have a
receptor for AI-2 and use AI-2 as a QS signal (147). If they do, then it appears
that higher plants produce signal-mimic compounds that positively and negatively
affect AI-2 as well as AHL-mediated QS systems in bacteria.

The QS signals used by bacterial pathogens in their attack on plant hosts might
have the unintended side effect of alerting their host to impending invasion and
triggering defense responses. This possibility was suggested by a recent proteomic
analysis of the responses ofM. truncatulato added AHLs. Exposing roots ofM.
truncatulato nanomolar or micromolar concentrations of 3-oxo-C12HL from the
opportunistic pathogen,P. aeruginosa, or 3-oxo-C16:1HL from the N-fixing sym-
biont,Sinorhizobium meliloti, resulted in significant changes in the accumulation
of over 150 different proteins of diverse function (93). The concentration of the
added AHL, the structure of the AHL, and the length of exposure all affected the
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accumulation of these proteins, suggesting that there may be considerable speci-
ficity to the responses. Exposure of the plant to AHLs also altered the secretion of
AHL and AI-2 signal-mimic compounds by the roots. Thus, host plant detection
of bacterial QS signals and the triggering of diverse host responses could be a
relevant layer of interaction in many pathogenic and symbiotic associations.

CONCLUDING REMARKS AND PERSPECTIVES

The studies presented in this review illustrate how plant pathogenic bacteria use QS
signals to regulate genes for epiphytic fitness, such as motility inR. solanacearum,
antibiosis inE. carotovora, and UV light resistance inX. campestris, as well as
those for major pathogenicity factors, including EPS inP. stewartii, X. campestris,
andR. solanacearum, type III secretion systems inP. stewartiiandE. carotovora,
and exoenzyme production inE. carotovora, X. campestris, andR. solanacearum.
QS regulation appears to be an important mechanism for making the transition from
planktonic cells to aggregates, adjusting to the presence of other bacteria. A good
example of this would beR. solanacearum, where the 3-OH PAME-dependent Phc
pathway turns down motility, siderophore production, and salt tolerance, which are
important in the free-living, low virulence state, and switches on production of EPS
and cell wall–degrading enzymes, to initiate a high virulence state. In planta, some
hosts may provide enough nutrients for initial growth of pathogens, permitting the
population and signal buildup required for QS regulation of virulence factors such
ashrp genes and degradative enzymes. Early expression of such virulence factors
may be detrimental to the pathogen. For example, the pectic enzymes secreted byE.
carotovoracould release oligogalacturonide elicitors of plant defense responses
before the pathogen has reached the critical mass needed to overwhelm local
host barriers and defense responses. Similarly, the premature production of EPS
slime by a vascular pathogen, such asP. stewartii, could block attachment and
subsequent steps of host invasion. At this point, a rationale for QS regulation of
the Hrp secretion system is not apparent.

Comparisons of phylogenetic trees constructed from sequences from the LuxI
and LuxR protein families with those from 16S rDNA show that QS systems
originated very early in evolution of the gram-negative Proteobacteria (65). Func-
tional pairs of LuxI and LuxR-homologs appear to have coevolved together, but in
many cases multiple pairs or individual member components seem to have been
inherited horizontally (65). Although some traits are directly regulated by a LuxR
homolog, e.g., carbenapem synthesis inE. carotovora, multifaceted phenotypes
such as pathogenicity are indirectly controlled by complex hierarchial signaling
cascades that probably arose by the addition of independently acquired regulatory
genes. To this end, plant pathogens employ some unique or unusual QS schemes.
For example,P. stewartiiwas the first bacterium shown to have a LuxR homolog
that functions as a transcriptional repressor.A. tumefaciensuses AHL binding
to stabilize the nascent receptor protein and has a lactonase for degrading the
signal in stationary phase.R. solanacearumuses a unique fatty acid ester signal
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molecule, and bothR. solanacearumandX. campestrisuse two-component sys-
tems rather than LuxR homologs to mediate responses to their unique QS signals. In
R. solanacearum, the PhcR response regulator posttranscriptionally affects levels
of PhcA and, inX. campestris, RpfG somehow affects levels of cyclic di-GMP.

Our knowledge of QS regulation, signal receptors, and synthases in plant
pathogens is still very incomplete. For example, additional LuxR-like regula-
tors have been postulated, but not identified, forP. stewartii, E. carotovora, R.
solanacearum, andX. campestris, and no global view of functions subject to QS
regulation is available for any plant pathogen. Genomics and proteomics promise
to rapidly expand our perspective of QS regulation in plant pathogenic species,
as is occurring in model animal pathogens and plant symbionts. As we acquire
this information, we must also begin to study how QS regulation actually works
in planta, where diffusion of signals is an open question and where signal-mimics
from the host and its responses to QS signals come into play. In the end, the
complexities could be daunting. In all likelihood, the avirulent phenotype of QS
mutants will rest not only on the coordinated expression of a few crucial genes,
but also on the incremental and conditional contributions from many other genes.
Which genes are crucial and how their expression is affected by QS regulation re-
main to be determined. How large does the local population of the pathogen have
to be before it becomes “quorate”? Does QS turn genes on and off many times
during infection as bacteria alternate between planktonic cells and aggregates or
biofilms? When are traits such as EPS synthesis, exoenzyme production, and Hrp
secretion expressed during infection and why? Do different QS-dependent genes
have different quorate thresholds? Alternatively, does population density and/or
confinement merely fulfill a prerequisite condition before other factors, such as
specific plant signals or contact, can act?

Whatever mechanisms are involved, it is clear from mutant studies that phy-
topathogenic bacteria depend on the exchange of external QS signal molecules
for normal infection and pathogenesis. Consequently, these signals present attrac-
tive targets for control of bacterial diseases through genetic engineering of plants.
Research to date has focused on transgenic plants that produce either AHLs to jam
pathogen signaling or trick them into revealing their presence too soon or AHL
lactonases that degrade the signals. The preliminary finding that these plants are
more disease resistant is very promising and again confirms the importance of QS
regulation to pathogen attack. However, in terms of reducing plant disease through
manipulation of QS, the challenge for future work is to make changes that are
specific to particular pathogens, tissues, and developmental windows without also
impacting beneficial microbes.
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