

University of Connecticut [OpenCommons@UConn](https://opencommons.uconn.edu?utm_source=opencommons.uconn.edu%2Fchem_educ%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages)

[Chemistry Education Materials](https://opencommons.uconn.edu/chem_educ?utm_source=opencommons.uconn.edu%2Fchem_educ%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages) **[Department of Chemistry](https://opencommons.uconn.edu/chem?utm_source=opencommons.uconn.edu%2Fchem_educ%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages)**

8-1-2006

The Harmonic Oscillator, The Hermite Polynomial Solutions

Carl W. David *University of Connecticut*, Carl.David@uconn.edu

Follow this and additional works at: [https://opencommons.uconn.edu/chem_educ](https://opencommons.uconn.edu/chem_educ?utm_source=opencommons.uconn.edu%2Fchem_educ%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages) Part of the [Chemistry Commons](http://network.bepress.com/hgg/discipline/131?utm_source=opencommons.uconn.edu%2Fchem_educ%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

David, Carl W., "The Harmonic Oscillator, The Hermite Polynomial Solutions" (2006). *Chemistry Education Materials*. 17. [https://opencommons.uconn.edu/chem_educ/17](https://opencommons.uconn.edu/chem_educ/17?utm_source=opencommons.uconn.edu%2Fchem_educ%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages)

C. W. David Department of Chemistry University of Connecticut Storrs, Connecticut 06269-3060

(Dated: August 1, 2006)

I. SYNOPSIS

The Harmonic Oscillator's Quantum Mechanical solution involves Hermite Polynomials, which are introduced here in various guises any one of which the reader may find useful as a starting points.

II. WRITING THE SCHRÖDINGER EQUATION IN DIMENSIONLESS FORM

The relevant Schrödinger Equation is

$$
-\frac{\hbar^2}{2\mu}\frac{\partial^2}{\partial z^2}\psi + \frac{k}{2}z^2\psi = E\psi
$$
 (2.1)

where k is the force constant (dynes/cm) and μ is the reduced mass (grams). Cross multiplying, one has

$$
\frac{\partial^2}{\partial z^2}\psi - \frac{k\mu}{\hbar^2}z^2\psi = -\frac{2\mu}{\hbar^2}E\psi\tag{2.2}
$$

which would be simplified if the constants could be suppressed. To do this we change variable, from z to something else, say x, where $z = \alpha x$. Then

$$
\frac{\partial}{\partial z} = \frac{\partial x}{\partial z} \frac{\partial}{\partial x} = \frac{1}{\alpha} \frac{\partial}{\partial x}
$$

so

$$
\left(\frac{1}{\alpha^2}\right)\frac{\partial^2}{\partial x^2}\psi - \frac{k\mu}{\hbar^2}\alpha^2 x^2 \psi = -\frac{2\mu}{\hbar^2}E\psi\tag{2.3}
$$

and

$$
\frac{\partial^2}{\partial x^2}\psi - \frac{k\mu}{\hbar^2}\alpha^4 x^2 \psi = -\alpha^2 \frac{2\mu}{\hbar^2} E\psi
$$
 (2.4)

which demands that we treat

$$
1=\frac{k\mu}{\hbar^2}\alpha^4
$$

$$
\alpha = \left(\frac{1}{\frac{k\mu}{\hbar^2}}\right)^{1/4} = \left(\frac{\hbar^2}{k\mu}\right)^{1/4}
$$

With this choice, the differential equation becomes

$$
\frac{\partial^2 \psi}{\partial x^2} - x^2 \psi = -\epsilon \psi \tag{2.5}
$$

where

$$
\epsilon = \frac{2\alpha^2\mu E}{\hbar^2} = \frac{2\sqrt{\frac{\hbar^2}{k\mu}}\mu E}{\hbar^2} = \frac{2E\sqrt{\frac{\mu}{k}}}{\hbar}
$$

III. GUESSWORK FOR THE GROUND STATE

The easiest solution to this differential equation is

 $e^{-\frac{x^2}{2}}$

which leads to

$$
E=\frac{\hbar}{2}\sqrt{\frac{k}{\mu}}
$$

IV. A GENERATING FUNCTION SCHEME

Given

$$
\psi_0 = |0> = e^{-\frac{x^2}{2}}
$$

with $\epsilon = 1$, it is possible to generate the next solution by using

$$
N^{+} = -\frac{\partial}{\partial x} + x \tag{4.1}
$$

as an operator, which ladders up from the ground $(n=0)$ state to the next one (n=1) To see this we apply N^+ to ψ_0 obtaining

$$
N^{+}\psi_0 = N^{+}|0\rangle = \left(-\frac{\partial}{\partial x} + x\right)e^{-\frac{x^2}{2}} = -(-x)\psi_0 + x\psi_0 = 2xe^{-x^2/2} = \psi_1 = |1\rangle \tag{4.2}
$$

Typeset by REVT_FX

Doing this operation again, one has

$$
N^{+}\psi_{1} = N^{+}|1\rangle = \left(-\frac{\partial}{\partial x} + x\right)2xe^{-\frac{x^{2}}{2}} = (-2 + 4x^{2})e^{-x^{2}/2}
$$
\n(4.3)

etc., etc., etc..

where $H(x)$ is going to become a Hermite polynomial. One then has

 $\frac{d\psi}{dx} = -xe^{-x^2/2}H(x) + e^{-x^2/2}\frac{dH(x)}{dx}$

V. HERMITE POLYNOMIAL DEFINITION

Assuming

$$
\psi = e^{-x^2/2}H(x)
$$

and

$$
\frac{d^2\psi}{dx^2} = -e^{-x^2/2}H(x) + x^2e^{-x^2/2}H(x) - 2xe^{-x^2/2}\frac{dH(x)}{dx} + e^{-x^2/2}\frac{d^2H(x)}{dx^2}
$$

From Equation 2.5 one has,

$$
\frac{\partial^2 \psi}{\partial x^2} - x^2 \psi = -e^{-x^2/2} H(x) - 2xe^{-x^2/2} \frac{dH(x)}{dx} + e^{-x^2/2} \frac{d^2 H(x)}{dx^2} = -\epsilon e^{-x^2/2} H(x)
$$
(5.1)

one has

or

$$
-H(x) - 2x\frac{dH(x)}{dx} + \frac{d^2H(x)}{dx^2} = -\epsilon H(x) \tag{5.2}
$$

which we re-write in normal lexicographical order

$$
\frac{d^2H(x)}{dx^2} - 2x\frac{dH(x)}{dx} - (1 - \epsilon)H(x) = 0
$$
\n(5.3)

This is Hermite's differential equation.

VI. GENERATING HERMITE'S DIFFERENTIAL EQUATION

Starting with

$$
\frac{dy}{dx} + 2xy = 0\tag{6.1}
$$

or, inverting the logarithm,

$$
y = Ce^{-x^2}
$$

We now differentiate Equation 6.1, obtaining

$$
\frac{d^2y}{dx^2} + 2\frac{d(xy)}{dx} = \frac{d^2y}{dx^2} + 2x\frac{dy}{dx} + 2y\frac{dx}{dx} = \frac{d^2y}{dx^2} + 2x\frac{dy}{dx} + 2y = 0; n = 0
$$
\n(6.2)

Doing this again, i.e., differentiating this (second) equation (Equation 6.2), one has

$$
\frac{d\frac{d^2y}{dx^2}}{dx} + \frac{d2x\frac{d(y)}{dx}}{dx} + 2\frac{dy}{dx} = \frac{d^2\left(\frac{dy}{dx}\right)}{dx^2} + 2x\frac{d\left(\frac{dy}{dx}\right)}{dx} + 4\left(\frac{dy}{dx}\right) = 0; n = 1
$$

which is the same equation, (but with a 4 multiplier of the last term) applied to the first derivative of y. Take

 dx

2

 $\ell ny = -x^2 + \ell nC$

so, integrating each side separately, one has

dy

 $\frac{dy}{y} = -2xdx$

the derivative again:

$$
\frac{d\left(\frac{d^2\frac{dy}{dx}}{dx^2} + 2x\frac{d\frac{dy}{dx}}{dx} + 4\frac{dy}{dx}\right)}{dx} = 0
$$

i.e.,

$$
\frac{d^2\left(\frac{d^2y}{dx^2}\right)}{dx^2} + 2x \frac{d\left(\frac{d^2y}{dx^2}\right)}{dx} + 6\left(\frac{d^2y}{dx^2}\right) = 0
$$

$$
\frac{d^2f(x)}{dx^2} + 2x\frac{df(x)}{dx} + 6f(x) = 0; n = 2
$$

f(x) has the form
$$
g(x)e^{-x^2}
$$
 where g(x) is a polynomial in x.

$$
\frac{d^2g(x)e^{-x^2}}{dx^2} + 2x\frac{dg(x)e^{-x^2}}{dx} + 2(n+1)g(x)e^{-x^2} = 0
$$

i.e.,

$$
(g''(x) - 4xg'(x) - 2g(x) + 4x^2g(x) + 2xg'(x) - 4x^2g(x) + 2(n+1)g(x)) e^{-x^2} = 0
$$

or

$$
g''(x) - 2xg'(x) + 2ng(x) = 0
$$

and we had

$$
H''(x) - 2xH'(x) - (1 - \epsilon)H(x) = 0
$$

which leads to

$$
2n=-1+\epsilon
$$

i.e.,

$$
\epsilon = 1 + 2n = \frac{2E\sqrt{\mu/k}}{\hbar}
$$

i.e.,

$$
E=\hbar (n+\frac{1}{2})\sqrt{\frac{k}{\mu}}
$$

VII. FROBENIUS, BRUTE FORCE, METHODOLOGY

The most straight forward technique for handling the Hermite differential equation is the method of Frobenius. We assume a power series *Ansatz* (ignoring the indicial equation argument here), i.e.,

$$
\psi=\sum_{i=0}a_ix^i
$$

and substitute this into Equation 5.3, obtaining

$$
\frac{\partial^2 \psi}{\partial x^2} = \sum_{i=2} i(i-1)a_i x^{i-2}
$$

$$
-2x \frac{\partial \psi}{\partial x} = -2 \sum_{i=1} i a_i x^i
$$

$$
(\epsilon - 1)\psi = (\epsilon - 1) \sum_i a_i x^i = 0
$$

i.e.,

$$
\frac{\partial^2 \psi}{\partial x^2} = 2(1)a_2 + (3)(2)a_3x + (4)(3)a_4x^2 + \cdots
$$

$$
-2x\frac{\partial \psi}{\partial x} = -2a_1x^1 - 2a_2x^2 - 2a_3x^3 - \cdots
$$

$$
(\epsilon - 1)\psi = (\epsilon - 1)a_0 + (\epsilon - 1)a_1x + (\epsilon - 1)a_2x^2 - \cdots = 0
$$

which leads to

$$
(2)(1)a_2 + (\epsilon - 1)a_0 = 0 \ (even)
$$

$$
(3)(2)a_3 + (\epsilon - 1)a_1 - 2a_1 = 0 \ (odd)
$$

$$
(4)(3)a_4 - 2a_2 + (\epsilon - 1)a_2 = 0 \ (even)
$$

$$
(5)(4)a_5 - 2a_3 + (\epsilon - 1)a_3 = 0 \ (odd)
$$

which shows a clear division between the even and the odd powers of x. We can solve these equations sequentially.

We obtain

$$
a_2 = \frac{1 - \epsilon}{(2)(1)}
$$

$$
a_3 = \frac{2 + 1 - \epsilon}{(3)(2)} a_1
$$

$$
a_4 = \frac{2+1-\epsilon}{(4)(3)} a_2 = \left(\frac{2+1-\epsilon}{(4)(3)}\right) \left(\frac{1-\epsilon}{(2)(1)}\right)
$$

i.e.,

$$
a_4 = \left(\frac{(3-\epsilon)(1-\epsilon)}{(4)(3)(2)(1)}\right)
$$

This set of even (or odd) coefficients leads to a series which itself converges unto a function which grows to positive infinity as x varies, leading one to require that the series be terminated, becoming a polynomial.

We leave the rest to you and your textbook.