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The Harmonic Oscillator, The Hermite Polynomial Solutions
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(Dated: August 1, 2006)

I. SYNOPSIS

The Harmonic Oscillator’s Quantum Mechanical solu-
tion involves Hermite Polynomials, which are introduced
here in various guises any one of which the reader may
find useful as a starting points.

II. WRITING THE SCHRODINGER EQUATION
IN DIMENSIONLESS FORM

The relevant Schrodinger Equation is
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where k is the force constant (dynes/cm) and p is the
reduced mass (grams). Cross multiplying, one has
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which would be simplified if the constants could be sup-
pressed. To do this we change variable, from z to some-
thing else, say x, where z = ax. Then
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which demands that we treat
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With this choice, the differential equation becomes
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where
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ITII. GUESSWORK FOR THE GROUND STATE
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The easiest solution to this differential equation is
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which leads to

IV. A GENERATING FUNCTION SCHEME

Given
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with € = 1, it is possible to generate the next solution by
using
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as an operator, which ladders up from the ground (n=0)
state to the next one (n=1) To see this we apply NT to
1 obtaining
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Doing this operation again, one has

Nty = Nt >= (_8855 —|—x> 2we” T = (—2+ 433‘2)8_m2/2 (4.3)
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ete., ete., ete.. where H(x) is going to become a Hermite polynomial.
One then has

V. HERMITE POLYNOMIAL DEFINITION
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From Equation 2.5 one has,
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or one has
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which we re-write in normal lexicographical order
d2H dH so, integrating each side separately, one has
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This is Hermite’s differential equation. Iny = —a* 4+ (nC
VI. GENERATING HERMITE’S or, inverting the logarithm,
DIFFERENTIAL EQUATION
Y= Ce ™
Starting with
dy . . . ..
e + 2zy = (6.1) We now differentiate Equation 6.1, obtaining
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Doing this again, i.e., differentiating this (second) equation (Equation 6.2), one has
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which is the same equation, (but with a 4 multiplier of  the last term) applied to the first derivative of y. Take



the derivative again:
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f(x) has the form g(z)e~*" where g(x) is a polynomial in
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VII. FROBENIUS, BRUTE FORCE,
METHODOLOGY

The most straight forward technique for handling the
Hermite differential equation is the method of Frobenius.
We assume a power series Ansatz (ignoring the indicial
equation argument here), i.e.,
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and substitute this into Equation 5.3, obtaining
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which leads to

(2)(1)az + (e — 1)ag = 0 (even)
(3)(2)as + (e — 1)a; — 2a1 = 0 (o0dd)
(4)(3)ag — 2a2 + (e — 1)az = 0 (even)

(5)(4)as — 2a3 + (e — 1)asz = 0 (odd)

which shows a clear division between the even and the
odd powers of x. We can solve these equations sequen-

tially.
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ete.. positive infinity as x varies, leading one to require that
This set of even (or odd) coefficients leads to a series  the series be terminated, becoming a polynomial.
which itself converges unto a function which grows to We leave the rest to you and your textbook.
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