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The Harmonic Oscillator, The Hermite Polynomial Solutions

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060

(Dated: August 1, 2006)

I. SYNOPSIS

The Harmonic Oscillator’s Quantum Mechanical solu-
tion involves Hermite Polynomials, which are introduced
here in various guises any one of which the reader may
find useful as a starting points.

II. WRITING THE SCHRÖDINGER EQUATION
IN DIMENSIONLESS FORM

The relevant Schrödinger Equation is

− h̄2

2µ
∂2

∂z2
ψ +

k

2
z2ψ = Eψ (2.1)

where k is the force constant (dynes/cm) and µ is the
reduced mass (grams). Cross multiplying, one has

∂2

∂z2
ψ − kµ

h̄2 z
2ψ = −2µ

h̄2Eψ (2.2)

which would be simplified if the constants could be sup-
pressed. To do this we change variable, from z to some-
thing else, say x, where z = αx. Then

∂

∂z
=
∂x

∂z

∂

∂x
=

1
α

∂

∂x

so (
1
α2

)
∂2

∂x2
ψ − kµ

h̄2 α
2x2ψ = −2µ

h̄2Eψ (2.3)

and

∂2

∂x2
ψ − kµ

h̄2 α
4x2ψ = −α2 2µ

h̄2Eψ (2.4)

which demands that we treat

1 =
kµ

h̄2 α
4

α =

(
1
kµ
h̄2

)1/4

=
(
h̄2

kµ

)1/4

With this choice, the differential equation becomes

∂2ψ

∂x2
− x2ψ = −εψ (2.5)

where

ε =
2α2µE

h̄2 =
2
√

h̄2

kµµE

h̄2 =
2E
√

µ
k

h̄

III. GUESSWORK FOR THE GROUND STATE

The easiest solution to this differential equation is

e−
x2
2

which leads to

E =
h̄

2

√
k

µ

IV. A GENERATING FUNCTION SCHEME

Given

ψ0 = |0 >= e−
x2
2

with ε = 1, it is possible to generate the next solution by
using

N+ = − ∂

∂x
+ x (4.1)

as an operator, which ladders up from the ground (n=0)
state to the next one (n=1) To see this we apply N+ to
ψ0 obtaining

N+ψ0 = N+|0 >=
(
− ∂

∂x
+ x

)
e−

x2
2 = − (−x)ψ0 + xψ0 = 2xe−x2/2 = ψ1 = |1 > (4.2)
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Doing this operation again, one has

N+ψ1 = N+|1 >=
(
− ∂

∂x
+ x

)
2xe−

x2
2 = (−2 + 4x2)e−x2/2 (4.3)

etc., etc., etc..

V. HERMITE POLYNOMIAL DEFINITION

Assuming

ψ = e−x2/2H(x)

where H(x) is going to become a Hermite polynomial.
One then has

dψ

dx
= −xe−x2/2H(x) + e−x2/2 dH(x)

dx

and

d2ψ

dx2
= −e−x2/2H(x) + x2e−x2/2H(x) − 2xe−x2/2 dH(x)

dx
+ e−x2/2 d

2H(x)
dx2

From Equation 2.5 one has,

∂2ψ

∂x2
− x2ψ = −e−x2/2H(x) − 2xe−x2/2 dH(x)

dx
+ e−x2/2 d

2H(x)
dx2

= −εe−x2/2H(x) (5.1)

or

−H(x) − 2x
dH(x)
dx

+
d2H(x)
dx2

= −εH(x) (5.2)

which we re-write in normal lexicographical order

d2H(x)
dx2

− 2x
dH(x)
dx

− (1 − ε)H(x) = 0 (5.3)

This is Hermite’s differential equation.

VI. GENERATING HERMITE’S
DIFFERENTIAL EQUATION

Starting with

dy

dx
+ 2xy = 0 (6.1)

one has

dy

y
= −2xdx

so, integrating each side separately, one has

`ny = −x2 + `nC

or, inverting the logarithm,

y = Ce−x2

We now differentiate Equation 6.1, obtaining

d2y

dx2
+ 2

d(xy)
dx

=
d2y

dx2
+ 2x

dy

dx
+ 2y

dx

dx
=
d2y

dx2
+ 2x

dy

dx
+ 2y = 0 ; n = 0 (6.2)

Doing this again, i.e., differentiating this (second) equation (Equation 6.2), one has

d d2y
dx2

dx
+
d2xd(y)

dx

dx
+ 2

dy

dx
=
d2
(

dy
dx

)
dx2

+ 2x
d
(

dy
dx

)
dx

+ 4
(
dy

dx

)
= 0 ; n = 1

which is the same equation, (but with a 4 multiplier of the last term) applied to the first derivative of y. Take
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the derivative again:

d
(

d2 dy
dx

dx2 + 2xd dy
dx

dx + 4 dy
dx

)
dx

= 0

i.e.,

d2
(

d2y
dx2

)
dx2

+ 2x
d
(

d2y
dx2

)
dx

+ 6
(
d2y

dx2

)
= 0

d2f(x)
dx2

+ 2x
df(x)
dx

+ 6f(x) = 0 ; n = 2

f(x) has the form g(x)e−x2
where g(x) is a polynomial in

x.

d2g(x)e−x2

dx2
+ 2x

dg(x)e−x2

dx
+ 2(n+ 1)g(x)e−x2

= 0

i.e.,

(
g′′(x) − 4xg′(x) − 2g(x) + 4x2g(x) + 2xg′(x) − 4x2g(x) + 2(n+ 1)g(x)

)
e−x2

= 0

or

g′′(x) − 2xg′(x) + 2ng(x) = 0

and we had

H ′′(x) − 2xH ′(x) − (1 − ε)H(x) = 0

which leads to

2n = −1 + ε

i.e.,

ε = 1 + 2n =
2E
√
µ/k

h̄

i.e.,

E = h̄(n+
1
2
)

√
k

µ

VII. FROBENIUS, BRUTE FORCE,
METHODOLOGY

The most straight forward technique for handling the
Hermite differential equation is the method of Frobenius.
We assume a power series Ansatz (ignoring the indicial
equation argument here), i.e.,

ψ =
∑
i=0

aix
i

and substitute this into Equation 5.3, obtaining

∂2ψ

∂x2
=
∑
i=2

i(i− 1)aix
i−2

−2x
∂ψ

∂x
= −2

∑
i=1

iaix
i

(ε− 1)ψ = (ε− 1)
∑

i

aix
i = 0

i.e.,

∂2ψ

∂x2
= 2(1)a2 + (3)(2)a3x+ (4)(3)a4x

2 + · · ·

−2x
∂ψ

∂x
= −2a1x

1 − 2a2x
2 − 2a3x

3 − · · ·

(ε− 1)ψ = (ε− 1)a0 + (ε− 1)a1x+ (ε− 1)a2x
2 − · · · = 0

which leads to

(2)(1)a2 + (ε− 1)a0 = 0 (even)

(3)(2)a3 + (ε− 1)a1 − 2a1 = 0 (odd)

(4)(3)a4 − 2a2 + (ε− 1)a2 = 0 (even)

(5)(4)a5 − 2a3 + (ε− 1)a3 = 0 (odd)

which shows a clear division between the even and the
odd powers of x. We can solve these equations sequen-
tially.

We obtain

a2 =
1 − ε

(2)(1)

a3 =
2 + 1 − ε

(3)(2)
a1

a4 =
2 + 1 − ε

(4)(3)
a2 =

(
2 + 1 − ε

(4)(3)

)(
1 − ε

(2)(1)

)
i.e.,

a4 =
(

(3 − ε)(1 − ε)
(4)(3)(2)(1)

)
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etc..
This set of even (or odd) coefficients leads to a series

which itself converges unto a function which grows to

positive infinity as x varies, leading one to require that
the series be terminated, becoming a polynomial.

We leave the rest to you and your textbook.
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