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The Harmonic Oscillator, a Review of Classical and Elementary Quantum Mechanics

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060

(Dated: July 25, 2006)

I. SYNOPSIS

The classical harmonic oscillator is reviewed, as well
as some elementary characteristics of the eigenfunctions
of the quantum mechanical problem.

II. A HORIZONTALLY MOUNTED CHILD’S
CART

The harmonic oscillator is best seen as a cart attached
to a wall: which we can plot in Figure 1 as

which can be pulled out from the wall or pushed in
towards the wall. At rest, the cart stays at a certain
place, and we will often call this the origin, so that we can
measure distances relative to this place. This is the place
where the spring is neither compressed nor expanded, i.e.,
the place where there is no net force on the oscillator.

The force on the oscillator, when it is pulled a distance
x from the resting position, is

F = −k(z − z0) = −kx

where the coordinate x is defined as the relative coor-
dinate, while the coordinate z is the one relative to the
wall, i.e., z=0 means the oscillator is colliding with the
wall (which corresponds to x = −z0.

Before we go too far, we should note that the presence
of a wall on the left hand side, to which is attached the
spring, means that the domain of x is truncated on the
negative x-axis (by the wall). This is not true for the
positive x-axis, which extends from zero to infinity. We
will ignore this complication when we conceptualize the
harmonic oscillator (idealize it).

Newton’s second law says the rate of change of the
velocity, the acceleration, is equal to the applied force,
so

F = −k(z − z0) = −kx = µ
d2x

dt2
= µẍ

(as dx
dt = dz

dt ), where we will use dot notation, where each
dot stands for one derivative with respect to t.

We have used µ for the mass, rather than m, since
we are going to later, in the diatomic molecule case, use
the reduced mass rather than the actual mass (of the
molecule?).

Anyway, this is a second order differential equation,
whose solution is well known. The solution has the form

x = A cosωt+B sinωt

where ω, A, and B are constants. We have, taking the
time derivative,

ẋ = −Aω sinωt+Bω cosωt

and, doing it again,

ẍ = −Aω2 cosωt−Bω2 sinωt = −ω2x

Clearly,

µẍ = −µω2x = −kx

so

ω =

√
k

µ

So, one of the three constants in the proposed solution
is in fact not a unknown constant, not an arbitrary con-
stant, but has a value set by the constants of the problem.

We re-write the solution now as

x(t) = A cos

(√
k

µ
t

)
+B sin

(√
k

µ
t

)

explicitly showing the two so-called arbitrary constants,
which in this case correspond to the initial conditions for
this particular motion. one time derivative:

ẋ(t) = −Aω sin

(√
k

µ
t

)
+Bω cos

(√
k

µ
t

)

which is an expression for the velocity (actually, the in-
stantaneous velocity at a time t). We now form the two
terms (remember, ω =

√
k/µ):

x2 = A2 cos2 ωt+ 2AB cosωt sinωt+B2 sin2 ωt

and

ẋ2 = ω2
(
A2 sin2 ωt− 2AB cosωt sinωt+B2 cos2 ωt

)
and add them with suitable multipliers, i.e.,
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1
2
µẋ2 +

k

2
x2 =

1
2
µω2

(
A2 sin2 ωt− 2AB cosωt sinωt+B2 cos2 ωt

)
+
k

2
(
A2 cos2 ωt+ 2AB cosωt sinωt+B2 sin2 ωt

)
(2.1)

which becomes

k

2
(
A2 +B2

)
Clearly, this is a constant, which we normally call the

energy. A and B are chosen to describe the motion, and
the energy follows. Then, this energy value is maintained
constant during the motion, come what may! We know
further, that the potential energy for this oscillator is

P.E. =
1
2
kx2

and the kinetic energy is

K.E. =
1
2
µ

(
dx

dt

)2

III. THE HARMONIC OSCILLATOR,
QUANTUM MECHANICALLY

The quantum mechanical equivalent of Newton’s sec-
ond law becomes our Schrödinger Equation:

− h̄
2

2µ
∂2ψ

∂x2
+
k

2
x2ψ = Eψ (3.1)

This comes from the classic pop → −ıh̄ ∂
∂x for the x-

component of momentum.
We start with some guess work, i.e., we will ask, is

ψguess = e−αx

a possible solution to Equation 3.1? This question means,
can we substitute the guess into the Schrödinger Equa-
tion, Equation 3.1, and show that some choice of α causes
the equal sign to hold? It is trivial to take two derivatives
of this guess function, and test the question:

∂ψguess

∂x
= −αe−αx

and

∂2ψguess

∂x2
= +α2e−αx

so,

− h̄
2

2µ
α2e−αx +

k

2
x2e−αx ?= Ee−αx (3.2)

which implies

− h̄
2

2µ
α2 +

k

2
x2 ?= E (3.3)

if the equal sign held. But, if the equal sign held, this
would be an equation for x! We want a solution ψguess

which holds for any and all x, so this is not a solution.

IV. ANOTHER TRIAL WAVE FUNCTION

OK, the first guess was no good. Now, let’s try

ψguess = e−αx2

and again, substitute into the Schrödinger Equation for
the Harmonic Oscillator. We have

∂ψguess

∂x
= −2αxψguess

and

∂2ψguess

∂x2
= −2αψguess + 4αx2ψguess

so, substituting, we have

− h̄
2

2µ
(
−2α+ 4α2x2

)
ψguess +

k

2
x2ψguess

?= Eψguess

(4.1)
which would mean

h̄2α

µ
− E +

(
k

2
− 4α2h̄2

2µ

)
x2 = 0

if indeed the equal sign is going to hold. This means that
the coefficient of x2 must be zero, so that we do not have
a function of x plus a constant equal to zero. We have

k

2
− 4α2h̄2

2µ
= 0

or

α =
√
kµ

2h̄

Then

h̄2α

µ
− E = 0 =

h̄2
√

kµ

2h̄

µ
− E

2



which means that

E = h̄

√
k
µ

2
=

1
2
h̄ω

which is (since
√
k/µ = ω), of course, the ground state

energy of the harmonic oscillator.
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FIG. 1: The cart moves from left to right and back again depending on initial conditions.
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FIG. 2: The instantaneous sum of the kinetic energy (K.E.) and the potential energy (P.E.) is the constant total energy.
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