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ABSTRACT

Designing effective antisense sequences is a for-
midable problem. A method for predicting effica-
cious antisense holds the potential to provide
fundamental insight into this biophysical process.
More practically, such an understanding increases
the chance of successful antisense design as well
as saving considerable time, money and labor. The
secondary structure of an mRNA molecule is
believed to be in a constant state of flux, sampling
several different suboptimal states. We hypo-
thesized that particularly volatile regions might
provide better accessibility for antisense targeting.
A computational framework, GenAVERT was de-
veloped to evaluate this hypothesis. GenAVERT
used UNAFold and RNAforester to generate and
compare the predicted suboptimal structures of
mRNA sequences. Subsequent analysis revealed
regions that were particularly volatile in terms of
intramolecular hydrogen bonding, and thus poten-
tially superior antisense targets due to their high ac-
cessibility. Several mRNA sequences with known
natural antisense target sites as well as artificial
antisense target sites were evaluated. Upon com-
parison, antisense sequences predicted based
upon the volatility hypothesis closely matched
those of the naturally occurring antisense, as well
as those artificial target sites that provided efficient
down-regulation. These results suggest that this
strategy may provide a powerful new approach to
antisense design.

INTRODUCTION

The ability to manipulate gene expression is one of the
most fundamental aspects of biotechnology. It has been
accomplished through a variety of methods, including

through the use of antisense nucleic acids (DNA and
RNA). Since antisense is complementary to a target
mRNA, the two strands may hybridize through
hydrogen bonding. This double-stranded duplex may
hinder ribosomal binding, block ribosomal migration or
induce cleavage by an RNase (1,2). In this way, antisense
has the potential to be used for numerous applications
ranging from metabolic engineering to human gene
therapy. Many antisense drugs are in clinical trial for
the treatment of a wide variety of diseases, including
cancer (3,4).
The process of selecting an antisense sequence that is

able to effectively bind to a target mRNA and block
protein synthesis is complex and governed by many
factors. One of the most important factors is the second-
ary structure of the target mRNA, which is determined by
intramolecular hydrogen bonding that helps to establish a
more thermodynamically stable conformation (5). The
accepted theory is that this secondary structure would be
problematic for antisense-based down-regulation due to
the majority of the target mRNA being paired to itself.
This intramolecular bonding does not prevent translation
because of the ribosome’s ability to unwind mRNA (6),
but it greatly decreases accessibility for antisense binding.
There have been many attempts to try and accurately

predict the efficacy of antisense sequences to save time,
money and labor, all of which are wasted with brute
force design and test methods of antisense synthesis.
Some approaches involve searching an mRNA sequence
for consensus sequences that are present in effective
natural and artificial antisense and base their predictions
on those motifs (7). Other methods offer the prediction of
RNA–RNA interaction mechanisms and may suggest
where the target would be in a given mRNA for a specified
antisense or small-interfering RNA (siRNA) sequence
(8,9). Still other strategies that focus on eukaryotic
systems utilize large databases of known species-specific
siRNA sequences and predict sequences based on that
data. Finally, some methods focus mainly on predicting
accessible sites on a target RNA (10,11) or fusing
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accessibility prediction with hybridization prediction
(12–14). There is still much to learn about antisense pre-
diction and the need for more effective strategies remains.
In recent years, the idea that an mRNA strand may not

always take the form of a distinct fixed molecular struc-
ture has become much more prominent. It is believed that
an mRNA molecule may actually be in a state of constant
structural fluctuation, transitioning between different con-
formations near the minimum free energy (MFE) struc-
ture, particularly in an ever-changing cellular environment
(15–17). Analyzing suboptimal mRNA structures with a
thermodynamic stability comparable with that of the
MFE structure may reveal that certain regions are more
‘volatile’ than others. Since these regions have the ability
to change conformation without significantly altering the
Gibbs free energy of the entire molecule, they may have
more freedom to alter their hydrogen bonding. Therefore,
these regions would likely be the most accessible targets
for antisense binding because of their constant formation
and breaking of intramolecular hydrogen bonds.
A computational framework, GenAVERT (http://www

.rslabs.org), was developed to take advantage of this
concept of structural fluctuation to predict the sites on a
given strand of mRNA that are most likely to vary in
structure within a defined range of free energy. These
sites were hypothesized to be superior antisense targets.
To test this idea, different types of antisense systems
were examined. First, several naturally occurring antisense
sequences from prokaryotes were analysed by using
GenAVERT. The analysis predicted that the most
volatile regions of those mRNAs were essentially the
same as those of the natural antisense target sites. Next,
genes for which man-made antisense had been designed
for down-regulation purposes were analysed. The results
of the best antisense compared favorably with
GenAVERT predictions, indicating that those antisense
exhibiting high levels of down-regulation targeted
regions of relatively high volatility.

MATERIALS AND METHODS

Natural and artificial antisense prediction

The ability to predict natural antisense transcripts is a
major part of developing a strategy for designing artificial
antisense. As noted earlier, many strategies already utilize
natural antisense as an indicator of a prediction system’s
accuracy (8). Since these antisense expression systems have
presumably evolved over millennia, they are thought to
result in the most effective inhibitory duplexes possible
for a given mRNA. Many of these antisense sequences
have been experimentally tested to positively validate
their efficiency in the down-regulation or silencing of
their corresponding mRNAs.
Perhaps some of the most important and well-studied

antisense expression systems are those of toxin–antitoxin
systems (18). These systems generally consist of an mRNA
that encodes for a ‘suicide protein’ that is extremely toxic
to the host cell, as well as a cis-encoded antisense RNA
that is transcribed from the same locus but in the opposite
direction (as opposed to trans-encoded, where the

antisense is encoded at a separate locus). The significance
of these toxin–antitoxin systems is in the necessity for ef-
ficient inhibition of protein expression to avoid cell death.
Translation levels must be brought to an extremely low
level or blocked completely for a cell to continue to carry
these suicide genes; therefore their corresponding anti-
sense inhibitors must be exceedingly effective. A successful
antisense prediction system should be able to predict se-
quences similar to these RNA antitoxins after analysing
their correlating toxin-encoding mRNAs. The volatility
hypothesis was evaluated using the following bacterial
toxin–antitoxin systems (19): hok/sok (20), pndA/pndB
(21), hokC/sokC (22), gef/sof (23), hokA/sokA (22) and
ldrA/rdlA (24).

Apart from natural antisense prediction, the prediction
of artificial antisense is perhaps just as enlightening.
Examining artificial antisense systems that may exhibit a
range of gene down-regulation levels provides another
platform for measuring the efficacy of identifying
volatile regions in mRNA secondary structure. These
types of systems represent gene regulation beyond the
scope of toxin–antitoxin systems and even those present
in various types of bacteria. Three different systems were
investigated, with mRNAs of varying lengths, one of
which is polycistronic and upwards of 2000 bp. The anti-
sense from these systems demonstrated varying levels of
down-regulation and their respective target sites were thus
examined for volatility in an attempt to explain the vari-
ation in experimental efficiency.

GenAVERT

GenAVERT was developed to test the idea that structur-
ally volatile regions of mRNA made more effective anti-
sense targets. GenAVERT accomplished this objective by
generating and comparing suboptimal secondary struc-
tures of a given mRNA sequence. Analysis of these com-
parisons revealed regions that were least ‘similar’ among
the set of folds, indicating volatility in intramolecular
hydrogen bonding and, according to the proposed hy-
pothesis, accessibility for antisense binding. The program
was written in Common Lisp (LispWorks, Cambridge,
UK) and calls upon two external programs, UNAFold
(http://mfold.rna.albany.edu/) and RNAforester (http://
bibiserv.techfak.uni-bielefeld.de/rnaforester/), and a Perl
script from the Vienna RNA Package.

GenAVERT functions simply by reading in an mRNA
sequence with a given name and then generates a set of
potential antisense sequences. Once GenAVERT receives
its input, UNAFold is invoked. UNAFold uses the
concept of nearest-neighbor thermodynamics to estimate
how the bases of an RNA sequence will interact with each
other to increase structural stability (25). It outputs the
MFE secondary structure for the given mRNA sequence,
as well as a set of suboptimal structures with slightly
higher Gibbs free energies (26). Since the output from
UNAFold is a set of ‘.ct’ files, each of which describes
one structure, an external Perl script (Vienna RNA
Package) (27) is called to convert each of these .ct files
into Vienna bracket format, where periods represent
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unpaired bases and open and close parentheses represent
base pairs. For example, ‘. . . . . .((. . . .)). . . .(((..))). . . .’

Since it is believed, as previously mentioned, that an
mRNA molecule is constantly fluctuating in its structure,
it is assumed that the range of possible in vivo mRNA
structures most likely consists of those that make up the
suboptimal range of free energy. If these suboptimal folds
are then compared based on structure, they should theor-
etically point out regions of the mRNA that change more
often than others, yet still allow the entire structure’s free
energy to remain relatively close to the MFE value. This in
turn would indicate that these regions possess superior
accessibility and act as likely antisense target sites. To ac-
complish this goal, the Vienna bracket structures are
analysed with the external program, RNAforester.

RNAforester is a comparison program designed for
phylogenetic analysis of different RNA molecules
(28,29). It takes both sequence and structure into
account and compares only two structures at a time. As
a result, the basic pairwise input would be two sequences
and their corresponding Vienna bracket structures. It then
proceeds to generate a homology file showing where the
two sequences and structures are similar, using the
common method of filling in regions that do not show
homology in sequence and structure with ‘gaps.’ In the
case of GenAVERT, RNAforester is called to compare
the consecutive suboptimal folds that were generated
from UNAFold. For example, assume that UNAFold
outputs the MFE structure for a specific mRNA
sequence as well as three suboptimal folds (1, 2 and 3),
for a total of four structural folds. RNAforester would
first be called to compare the MFE fold and suboptimal
fold 1, then to compare suboptimal fold 1 with suboptimal
fold 2, 2 with 3 etc. In this way, there is an artificial sense
of transitioning from one structure to another because
each file indicates which bases have changed their
hydrogen bonding pattern between the two folds (note
that all sequences used are that of the given mRNA
sequence, while only the structures themselves are
changing). Each of the structures is weighted equally.
An example of this artificial transitioning is depicted in
Figure 1. A more aesthetic method of viewing this transi-
tioning is by simply using the program RNAmovies (15)
where the only input required is the mRNA sequence and
the set of structures in Vienna bracket format. Whenever
GenAVERT is invoked, an RNAmovies input file is
created for the user.

GenAVERT then searches all of these RNAforester
homology files for any length of mRNA that has

changed its conformation (altered hydrogen bonding)
between two structures and includes them in a pool of
possible volatile regions. It then searches through this
pool of possible regions and enumerates the number of
times that a certain base shows up. This count indicates
the number of times that this base has changed position
over the ‘structural transition’ from the MFE fold to the
final suboptimal (and least energetically favorable) fold.
The number of suboptimal structures is determined by the
default settings of the UNAFold window parameter with
all kept within 5% of the Gibbs free energy of the MFE
structure (26). GenAVERT then uses these values to
create a list of every base that meets or exceeds a certain
level of volatility. Since this list is not always made of
bases that are consecutively located in the mRNA
sequence, it may be split into multiple individual volatile
regions. The longest of these volatile regions is chosen as
the most volatile and therefore the most accessible region
on the mRNA strand. The reverse complement of this
region is then generated as the antisense sequence that is
most likely to down-regulate the expression of the
target gene.
However, this first antisense sequence may not always

be a practical choice and it may be necessary to continue
to collect a set of potential antisense sequences. For
example, consider a hypothetical set of five consecutive
bases that alter in hydrogen bonding 20 times over the
entire structural transition, with no other bases coming
close to that level of volatility. As a result, an antisense
sequence complementary to those five bases would be pre-
dicted as the optimal. However, such a short antisense is
unlikely to be viable. As a result, the process is continued
for bases that alter their bonding at the next highest level,
for example, 15 times, 14 times, 12 times, etc., essentially
providing a set of high ranking antisense possibilities of
varying length. Therefore, GenAVERT continues to
generate the optimal antisense sequence for each level of
volatility until no significant difference between bases can
be detected. A flowchart of the processes that make up
GenAVERT is shown in Figure 2.
Some of the predicted results were considered too small

to be viable. We therefore implemented a heuristic criter-
ion to only select sequences that were at least 35 bp in
length. Thus, although the program will generate antisense
sequences less than 35 bp (see Supplementary Dataset 1),
discussion is restricted to those sequence of 35 bp or
greater as predicted by GenAVERT.

Comparison with Sfold

As a benchmark, the results from GenAVERT were then
compared with that of a currently available program that
has a similar goal of predicting inhibitory RNA sequences
for prokaryotes. The program used for comparison was
the Soligo partition of Sfold (http://sfold.wadsworth.org/
cgi-bin/index.pl) (12–14). Sfold is designed to predict anti-
sense sequences with the caveat that the user must declare
a pre-determined length for the antisense sequence.
Therefore, different values for the antisense length were
used with Sfold to present a wider range of the program’s
capabilities. Lengths of 35 bp, 50 bp and the exact target

Figure 1. Transition between two possible structures of hok mRNA as
predicted by UNAFold and displayed using the interpolating effects of
RNAmovies. The large transitioning region (nucleotides 70–150)
consists almost entirely of the sok target region (nucleotides 65–131).
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length were used. The authors have no knowledge of any
other de novo antisense prediction software available at
this time and none that requires as little input from the
user as that of GenAVERT.

RESULTS

Natural antisense prediction

hok/sok
The hok (host killing) gene is located on plasmid R1 of
Escherichia coli and encodes for a protein of 52 amino
acids that is toxic to the host cell. A naturally occurring
antisense transcript found at the same locus but encoded
in the opposite direction, is denoted sok (suppression of
killing). The overall function of the hok/sok expression
system is for plasmid stabilization. Cells that lose the
plasmid carrying the locus are killed due to translation
of stable hok mRNA that remains behind in the cell,
while the more quickly degraded sok RNA is unable to
further inhibit protein synthesis (18,20,22).
When GenAVERT was used to evaluate hok mRNA,

the highest ranking antisense sequence greater than 35 bp
was the 70 bp antisense sequence shown in Figure 3. This
sequence overlapped with the sok target region (sokT)

by almost 93% and only had an overhang of 8 bases
(Figure 3). All three of the other lengths of antisense pre-
dicted by Sfold were designed to target sites near the
30-end of the mRNA, far from the naturally occurring
target site. Table 1 summarizes these results, as well as
all of the remaining results.

pndA/pndB
The pndA gene is located on plasmid R483 of E. coli. It is,
in fact, a hok-homologue and has many of the same func-
tional characteristics of the hok family genes, including a
tac (translational activation) sequence, mok (method of
killing) reading frame, as well as having a cis-encoded
antisense denoted pndB. It also, unsurprisingly, encodes
for a toxic protein (21).

Figure 4 displays the various antisense predictions,
including antisense generated from GenAVERT that
overlapped with �87% of the pndB target region
(pndBT) with an overhang of 11 bases. The Sfold antisense
with the exact target site length, as well as the 50 bp length
both overlapped with pndBT by only about 14.3%. The
35 bp antisense from Sfold was designed to target the
complete opposite end of the mRNA, clearly illustrating
the variability in Sfold predictions, even when antisense
length is changed only by 15 bp.

Figure 2. Flowchart depicting GenAVERT algorithm.
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ldrA/rdlA
The ldrA (long direct repeat A) gene is found on the E. coli
K-12 genome (as opposed to being located on a plasmid
like hok or pndA) along with its own cis-encoded antisense
transcript known as rdlA (regulator detected in ldrA). ldrA
is analogous (not homologous) to hok and is part of a
different gene family. However, it also encodes for a
toxic protein lethal to the host cell, consisting of only 35
amino acids. rdlA was shown to effectively inhibit the
translation of ldrA by Kawano et al. (24). Actual se-
quences were taken from the EcoCyc Database (http://
www.ecocyc.org) (30) using the putative transcription
start and end sites of the homologous and
well-characterized ldrD gene.

GenAVERT predicted an antisense sequence of 95 bp,
which overlaps with 92% of the 67 bp rdlA target region
(rdlAT). However, it also has an overhang that is not com-
plementary to rdlAT of about 34 bases. Despite this, when

GenAVERT’s sequence is compared with those produced
by Sfold, only one of the predicted Sfold sequences shared
�45% overlap with rdlAT, as shown in Supplementary
Figure S1. Again, the 50 and 67 bp Sfold antisense
strands target the 30-end, while the 35 bp strand targets
the 50-end, showing the same variability as before.

hokC/sokC
The hokC gene (also homologous to hok) was found to be
carried by E. coli ECOR24, and its transcript is believed to
be �330 nucleotides long. Its cis-encoded antisense was
named sokC (22). After using GenAVERT to predict a
potential antisense inhibitor for the hokC mRNA
sequence, it was able to predict an antisense sequence
complementary to 82% of the sokC target (sokCT)
sequence with an overhang of 28 bases. Sfold predictions
were much more accurate in this case than in other
examples with percent overlaps of 47%, 60% and 76%
to sokCT for 35 bp, 50 bp, and exact target lengths
respectively (Supplementary Figure S2).

gef/sof
The gef (gene expression fatal) gene encodes for a 50
amino acid cell-killing protein and is found on the
E. coli K-12 genome. It is essentially the same as hokC,
with a cis-encoded antisense almost exactly that of
sokC, denoted sof (suppression of fatality). Unlike hokC,
however, there is an IS186 insertion sequence located
downstream of the coding region, a sequence which is
1338 bp long (31) and is thought to disrupt the usual
hokC fbi (fold-back inhibition) sequence and usual
mRNA processing. However, despite the presence of this
insertion, it has been shown that it is still active on a
transcriptional level and is being regulated by sof RNA.
The length of the gef mRNA in this case is thought to be
about 644 nucleotides long and terminates within the

Figure 4. pndA mRNA sequence with predicted antisense from
GenAVERT (red), Sfold (35 bp) (purple), Sfold (50 bp) (blue) and
Sfold (exact target length) (green). The pndB target as well as the be-
ginning and end of each antisense sequence are bold and underlined.

Figure 3. hok mRNA sequence with predicted antisense from
GenAVERT (red), Sfold (35 bp) (purple), Sfold (50 bp) (blue) and
Sfold (exact target length) (green). The sok target as well as the begin-
ning and end of each antisense sequence are bold and underlined.

Table 1. Natural antisense prediction summary table. The percent of

overlapping base pairs of the naturally occurring target with antisense

predicted by GenAVERT and by Sfold (with differing target lengths)

are shown

mRNA Sfold
(35 bp) (%)

Sfold
(50 bp) (%)

Sfold
(exact target
length) (%)

GenAVERT
(%)

hok 0 0 0 92.5
pndA 0 14.3 14.3 87.3
ldrA 44.8 0 0 92.5
hokC 47.3 60 76.4 81.8
gef 52.5 0 0 77
hokA 40.4 32.7 75 100

Note that some sequences are smaller than others and that some may
have overhanging base pairs. Also, unlike Sfold, GenAVERT does not
require a priori specification of antisense length by the user.

PAGE 5 OF 10 Nucleic Acids Research, 2013, Vol. 41, No. 3 e43

 at U
niversity of C

onnecticut H
ealth C

enter - L
.M

. Stow
e L

ibrary - C
ollection M

 on A
pril 4, 2014

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://www.ecocyc.org
http://www.ecocyc.org
http://nar.oxfordjournals.org/cgi/content/full/gks902/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks902/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks902/DC1
http://nar.oxfordjournals.org/
http://nar.oxfordjournals.org/


insertion sequence, 200 bp downstream of the stop codon
(22,23,32).
GenAVERT predicted an antisense sequence that was

complementary to 77% of the sof target region (sofT).
However, it also targeted a portion of the mRNA
outside of the sofT region, as can be seen in
Supplementary Figure S3. Comparing this data with the
Sfold predictions revealed only one sequence that was pre-
dicted to overlap with 53% of the natural target. The
other top scoring antisense sequences for 50 bp and for
the exact target length did not overlap the natural target
in any way. Again, the variability with small changes in
sequence length is exhibited in this case.

hokA/sokA
Like pndA and hokC, hokA is also a hok homologue and
displays the same characteristics but was found in E. coli
C instead of E. coli K-12 or E. coli ECOR24. Its cis-
encoded transcript, sokA regulates the expression of the
toxic HokA protein in the usual manner (22).
It can be seen from Supplementary Figure S4 that all of

the predicted antisense sequences included at least some
complementary bases with the hokA target region
(hokAT). GenAVERT’s sequence contained a sequence
that is complementary to all of hokAT (100%) with a
short overhang of 13 bases. Sfold predicted a 35 bp
region that exhibited 40% overlap with the target,
whereas the antisense with the exact target length exhibited
75% overlap. However, even with the exact target length
(52 bp) antisense showing such a high percent overlap,
changing the antisense length by only 2 bp to 50 bp, rad-
ically shifted the sequence to display only 33% overlap.
As mentioned previously, Table 1 provides a summary

of the results for all of the natural antisense prediction.

Antisense design applications

Regulation of acetoacetate decarboxylase in Clostridium
acetobutylicum
The adc gene of C. acetobutylicum ATCC 824 encodes for
acetoacetate decarboxylase (AADC) and is a major com-
ponent of the acetone formation pathway. The adc
mRNA is 859 bp long (33,34). Tummala et al. (35)
designed plasmids expressing three different antisense
strands of varying lengths in an effort to try and alter
acetone formation through the down-regulation of
AADC. The first antisense RNA shared complementary
base pairs with the first 38% of the adcmRNA, the second
shared complementary base pairs with the first 68% of the
adc mRNA, while the third shared complementary base
pairs with 100% of the adc mRNA. The percent
down-regulation of AADC was reported to be greater
than 80% for all three strains containing the three differ-
ent antisense plasmids in both transitional and stationary
growth phases. The level of AADC expression was found
to be too low for quantification of down-regulation in the
late exponential phase.
Figure 5 depicts the volatility profile for the adc mRNA

based on nucleotide position. The target for the first anti-
sense sequence (38%) is from nucleotides 1 to 328,
whereas the target for the second (68%) is from

nucleotides 1 to 560. GenAVERT first predicts that the
optimal antisense target region is from nucleotides 261 to
322. This 62 bp region is targeted by all three of the ex-
pressed antisense RNAs. The second best antisense target
as predicted by GenAVERT targets nucleotides 252–488,
again, a region with parts encompassed by all three. The
next three subsequently scoring target sequences were pre-
dicted to be from nucleotides 252–504, 244–504 and 237–
504, staying generally in the same volatile region on the
mRNA (not depicted). The targeting of all three of the
expressed antisense RNAs for this highly volatile region
(>80% volatility within a 5% free energy range of the
MFE structure) may be an explanation for their ability
to induce efficient downregulation.

Regulation of phosphotransbutyrylase and butyrate kinase
in C. acetobutylicum
The ptb and buk genes of C. acetobutylicum ATCC 824
encode for phosphotransbutyrylase (PTB) and butyrate
kinase (BK), respectively. They are transcribed from the
same operon and therefore the two genes are encoded for
on one polycistronic mRNA that is 2128 bp long (36).
PTB and BK are both essential parts of the butyrate
production pathway and they were targeted in an effort
to alter the primary metabolism, specifically, the
solventogenesis pathways. Desai and Papoutsakis (37)
designed two different plasmids, each expressing antisense
RNAs that targeted either the ptb region of the mRNA or
the buk region of the mRNA. Strains expressing the ptb
antisense resulted in about a 70% decrease in the peak
level of PTB compared with the control, with peak levels
of BK being �80% less than that of the control. Strains
expressing the buk antisense resulted in about an 85%
decrease in the peak level of BK compared with the
control strain, while also showing about a 45% decrease
in the peak level of PTB.

Figure 6 illustrates the volatility profile for the ptb-buk
mRNA, as well the first eight predicted volatile regions
from GenAVERT. The most volatile region is 10 bp and
falls within the ptb target region (nucleotides 25–577) but is
probably not viable. The region ranked as second is 65 bp
and also falls within the ptb target site. The third top
scoring volatile region of 267 bp overlapped with the buk
target region (nucleotides 973–1018). The following three
top scoring regions were all generally from nucleotides
1503–2059, indicating there was perhaps down-regulation
potential by targeting sites nearer the 30-end. Amazingly,
volatile region number eight overlapped with almost the
entire ptb target region, encompassing nucleotides 5–568.
It therefore seems likely that the two target regions on this
polycistronic mRNA coincided with two highly volatile
areas in the secondary structure, allowing for accessible
binding and subsequent down-regulation of these two
enzymes. When GenAVERT was restricted to searching
for potential target sites in only the first 75% of the
mRNA sequence, every single predicted site overlapped
with the actual target sites (Supplementary Figure S5).

Regulation of the r32 transcription factor in E. coli
The rpoH gene of E. coli encodes for the s32 transcription
factor that is required for the transcription of specific

e43 Nucleic Acids Research, 2013, Vol. 41, No. 3 PAGE 6 OF 10

 at U
niversity of C

onnecticut H
ealth C

enter - L
.M

. Stow
e L

ibrary - C
ollection M

 on A
pril 4, 2014

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/cgi/content/full/gks902/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks902/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks902/DC1
http://nar.oxfordjournals.org/
http://nar.oxfordjournals.org/


genes. Upregulation of s32 can be induced under multiple
circumstances including ethanol shock, heat shock or the
overexpression of recombinant proteins. Srivastava et al.
(38) designed a plasmid to express an antisense RNA that
would target rpoH mRNA under heat shock, ethanol
shock and expression of organophosphorus hydrolase
(OPH). However, it has been reported that under
various conditions and with multiple strains there may
be up to six possible rpoH mRNAs present in vivo due
to different promoters under various regulation as noted
in the EcoCyc Database (30). It is believed that the
rpoHp1 (promoter 1 transcript) mRNA is present under
most physiological conditions and is the primary tran-
script (39).

It was reported by Srivastava et al. (38) that under
ethanol shock, control cultures showed a 10-fold
increase in s32 expression, while cultures with induced
antisense expression showed only an initial 3-fold
increase, which then fell to a 2-fold increase. Likewise,
the s32-regulated GroEL chaperone protein showed a sig-
nificant decrease in expression during the first hour after
ethanol shock when antisense was expressed. However,
the GroEL expression levels were comparable in both
antisense-expressing and control cultures beyond the
2 hour time point. Under heat shock conditions, GroEL
levels dropped 30% in antisense-expressing cultures after
the first 5minutes. Finally, under conditions of OPH ex-
pression, OPH levels should theoretically have been higher

Figure 6. Volatility profile for the ptb-buk polycistronic mRNA. The red portion of the profile indicates the ptb target sequence, while the green
portion the profile indicates the buk target. The nucleotides complementary to the top 8 scoring antisense sequences predicted by GenAVERT are
indicated by numbered horizontal lines. The lower the percent volatility, the more conserved the predicted secondary structure in that region.

Figure 5. Volatility profile for adc mRNA. Target regions are indicated on the plot. The nucleotides complementary to the two top scoring antisense
sequences predicted by GenAVERT are represented by numbered horizontal lines. The lower the percent volatility, the more conserved the predicted
secondary structure in that region.
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with antisense expression. However, it was instead
observed that OPH was actually higher in the control
cultures without antisense expression.
The volatility profile for rpoHp1 is shown in Figure 7

along with the first five predicted volatile regions from
GenAVERT. It is clear from this profile, that the most
conserved secondary structure of rpoHp1 is encompassed
by the designated target site (nucleotides 90–369).
GenAVERT ranks the top scoring volatile region as nu-
cleotides 380–439, followed by the second ranked region
of nucleotides 317–514. Regions ranked as fourth and fifth
also show some overlap with the target region of �52 and
73 bp, respectively. Volatility charts for rpoHp2, rpoHp3,
rpoHp4, rpoHp5 and rpoHp6 show the same trend, if not
more pronounced conserved secondary structure in their
respective target regions (Supplementary Figure S6.
through Figure S10 for volatility profiles).
The level of regulation of s32 that was detailed earlier

using this target region indicates that there was perhaps a
greater potential for superior down-regulation if the target
had been chosen elsewhere, despite rationale of choosing
the location of the Shine-Dalgarno sequence. This may be
particularly true because of the presence of multiple
mRNAs with very stable secondary structure in the
target region. The yield of OPH could have perhaps been
higher, while GroEL and s32 levels could have been much
lower under both heat shock and ethanol shock.

DISCUSSION AND CONCLUSION

The ability to determine accessible regions on a strand of
mRNA for antisense binding has been the goal of many
researchers for decades and continues to be a puzzling
problem to this day. The proposed hypothesis that struc-
turally volatile regions of mRNA make the best antisense
targets may provide insight into how natural antisense

transcripts evolved to be most effective in regulating the
expression of their corresponding gene. It is particularly
important to analyse cis-encoded antisense systems
because they most closely resemble artificial antisense se-
quences and reveal information about mechanisms
through which completely complementary sequences are
utilized in nature. This is opposed to the potentially less
informative trans-encoded antisense that often have
unusual binding mechanisms or even multiple binding
sites, many of which are difficult to predict in silico (40).

All of the natural antisense systems described here are
toxin–antitoxin systems, where an mRNA encodes for a
host-killing protein and a shorter strand of antisense RNA
that blocks the translation of this protein-encoding
mRNA. This is a particularly interesting aspect of our
findings because it is assumed that these antisense have
evolved to be particularly effective, minimizing leaky
translation so that a cell carrying such a ‘suicide protein’
gene will not only survive but will suffer the least amount
of growth inhibition possible. The gef/sof example is of
particular interest because even after the insertion
sequence disrupted the gene and lengthened the mRNA
sequence by more than 300 nucleotides, most of the
volatile region was still overlapping with almost all of
the sof target sequence. It is surprising that this extreme
lengthening did not alter the structural free energy calcu-
lations in such a way that another target region might be
more volatile. The longer an RNA sequence is, the more
options UNAFold has to predict suboptimal structures
within the allowed deviance from the minimum free
energy. Even if sof did not initially evolve to regulate the
significantly longer mRNA, the cells carrying the insertion
may still have been able to survive because the volatile
region on the mRNA remained relatively intact at the
sof target site. As a result, antisense continued to effect-
ively bind to the same region.

Figure 7. Volatility profile for rpoHp1 mRNA. The red portion of the profile indicates the target site. The nucleotides complementary to the top five
scoring antisense sequences predicted by GenAVERT are represented by numbered horizontal lines. The lower the percent volatility, the more
conserved the predicted secondary structure in that region.

e43 Nucleic Acids Research, 2013, Vol. 41, No. 3 PAGE 8 OF 10

 at U
niversity of C

onnecticut H
ealth C

enter - L
.M

. Stow
e L

ibrary - C
ollection M

 on A
pril 4, 2014

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/cgi/content/full/gks902/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks902/DC1
http://nar.oxfordjournals.org/
http://nar.oxfordjournals.org/


The fact that the predicted sequences from GenAVERT
most closely matched naturally occurring antisense when
sequence length was restricted to 35 bp is very intriguing.
In most cases, the antisense sequence length jumped from
lengths of about 19, 32 or 34 bp up to lengths of 60, 70 or
90 bp at the next (and best) ranking. This indicates that
there may be an underlying fundamental design aspect
through evolution where these lengths may provide a
greater antisense efficiency by maximizing specificity and
thermodynamic hybridization capabilities while still
minimizing antisense secondary structure.

In terms of benchmarks, Sfold does not recommend an
antisense length and it simply defaults to a length of 20
and searches through the entirety of the given mRNA for
accessibility and hybridization potential. The results show
that the top scoring antisense sequences are clearly not
predicted in the same way as GenAVERT’s, and their
predicted target sites may be scattered all over an
mRNA sequence. This is evident in all of the natural anti-
sense examples except for that of hokC. GenAVERT was
meant to overcome this problem and provide a better dir-
ection towards what the best antisense sequence would be
without forcing a guess at a ‘preferred sequence length.’

In examining the mRNAs that had been previously
targeted with artificial antisense, the volatility profiles
provided extensive insight into their potential mechanisms
of action. The most volatile regions on adc mRNA and
ptb-buk matched up well with the antisense target sites,
offering a possible explanation for their high level of
down-regulation of the encoded proteins. The predicted
antisense from GenAVERT for ptb-buk mRNA was par-
ticularly striking when only the first 75% of the mRNA
was included as sequence search space. In this case, all of
the top eight scoring antisense sequences encompassed or
included the majority of the antisense target sites. In
addition, after examining the set of rpoH mRNAs, it is
apparent that the majority of the artificial antisense target
sites on each of these sequences may have possessed a high
level of conserved secondary structure and thus lack of
volatility. The experimental results did indicate some
protein down-regulation, which lines up with the fact
that some shorter lengths of the target region exhibited
high volatility. However, GenAVERT predicted regions
of even higher volatility elsewhere, indicating that there
was a much greater potential to inhibit s32 expression at
those locations away from the target region. With the long
lengths (800–2000 bp) of these mRNAs, it is apparent that
GenAVERT has the potential to have an impact and be
applicable in current research.

Since only bacterial examples have been examined, any
benefits of using GenAVERT to design antisense se-
quences for eukaryotic mRNA remains unknown. Many
eukaryotic mRNA sequences are extraordinarily long
compared with the mRNA sequences of bacteria, and
their structures may not, in fact, be accurately predicted
by UNAFold. Likewise, making comparisons of se-
quences and structures that are thousands upon thousands
of bases long with RNAforester exponentially increases
the program’s runtime. However, the concept of volatility
in mRNA secondary structure may still be a useful and
applicable approach to blocking eukaryotic gene

expression. This could perhaps be accomplished by
breaking up long mRNA sequences into smaller
overlapping parts and analyzing each individually for po-
tential volatile regions. For the moment, 2500 bp may be a
reasonable absolute limit for the sequence length that
GenAVERT can handle because of runtime and the po-
tential lack of accuracy in secondary structure prediction
in RNAs longer than this.
Also, simply because GenAVERT predicts a certain

volatile region on an mRNA sequence, does not mean
that this entire region is the absolute optimal antisense
binding site. Other factors may also play a significant
role in antisense down-regulation. Thus, in the future, it
may be helpful to incorporate hybridization algorithms to
pinpoint a subsequence within a larger volatile region that
would maximize hybridization. It has also been shown
that perhaps different antisense sequences are more effect-
ive at different in vivo concentrations. As a result, it may
be possible to search this volatile region for optimum hy-
bridization while also utilizing equilibrium concentration
data to identify the utmost effective antisense sequence.
Programs such as Ensemble_Calc (http://mfold.rna.
albany.edu/?q=DINAMelt/Ensemble-calc) (41) may aid
in this task.
Finally, since each individual base is crucial in the struc-

tural thermodynamic calculations and since so many dif-
ferent genes exhibit such intriguing patterns in volatility, it
is almost certain that more antisense examples have yet to
be found. By leveraging the idea that an mRNA molecule
is not static, the hypothesis presented here may provide a
new strategy in rational antisense design by predicting
which sites on an mRNA strand are truly accessible for
antisense targeting.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online: Sup-
plementary Figures 1–10 and Supplementary Dataset 1.
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