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Molecular Dynamics of Water Monomer1

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
Carl.David@uconn.edu

6/15/2006

Abstract
Simulation of the classical molecular dynamics of a water molecule can 

be  useful  in  explaining  nomral  modes  of  motion,  Fourier  Transforms,  and 

fundamental frequencies of vibration, as illustrated herein.

Introduction

When learning about molecular vibrations, students can become mystified 

about the relationship of normal modes to actual atomic coordinates and their 

time variations. They also need help in understanding why the potential energy 

function, usually expressed in simple terms vis-à-vis bond length extensions, 

bond angle distortions and dihedral angle deformations, needs to be re-

constituted into forms appropriate to those normal modes. Finally, the static 

diagrams used in illustrating normal modes do not necessarily convey the 

compete information needed to aquire mastery of this particular subject.

It is possible to carry out a molecular dynamics simulation of a simple 

molecule, water in our case, which allows students to not only “see” each aspect 

of the motion (and of the simulation itself) but manipulate the parameters in their 

potential energy model to more fully appreciate molecular vibrations (and 
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rotations and translations, vide ante). In earlier work the HCℓ molecule was used 

to illustrate how molecular dynamics could be carried out. Since the simulations 

presented here are done in a symbolic algebraic system, students remain close to 

the analytical formulations they are used to without becoming distracted by high 

level coding in Fortran or other (more efficient) programming language. Finally, 

an appreciation of the Fourier Transform which allows “picking out” the 

vibrational frequencies from the molecular dynamics run’s output data can be 

enhanced with a hands on activity which transcends the use of them as applied 

herein, and extends the understanding to other spheres in chemistry where this 

transform is used.

The Molecular Mechanics Model

We are concerned here with a single molecule of water (larger systems 

might soon exhaust the resources of table top computers). The simplest 

forcefield for the molecule H1-O-H2 is

( ) 222 )(
2

)()(
2 21 eeOHeOH
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  (1)

where each OH distance is distorted relative to the equilibrium value (~0.95 Å), 

and the H1-O-H2 bond angle, ϑ,  is distorted relative to its equilibrium value of 

about 104.5o. H1 and H2 are labels which allow us to distinguish the two protons 

when and if we choose to treat HDO or HTO or DTO, the three isotopomers 

with unsymmetrical masses, or D2O or T2O. 

The problem for programmers in dealing with the vibrational motions of 

this molecule is evaluating the force on each nucleus. These forces consists of 
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three components on each atom(nucleus), x-, y- and z- each, and corresponds 

vectorially to the equation VFi −∇=


where i =1 and 3, say, refer to protons, and 

i=2 refers to the oxygen. The choice is arbitrary. Since z
k

y
j

x
i

∂
∂+

∂
∂+

∂
∂=∇ ˆˆˆ , it 

is a purely mechanical task to obtain expressions for the nine partial derivatives 

required to obtain the three force vectors. We use Maple to do this, since we 

want those expressions for instantaneous evaluation when needed during a single 

step of the molecular dynamics simulation. Then, since iii amF 
= , we can 

calculate the acceleration  each nucleus experiences, given the force acting on it, 

and from there calculate the change in velocity (and the change therefore of 

position), i.e., integrate Newton’s equations for all nine “coordinates” pertinant 

to the (water) molecule.

Once we have the simulation running (debugged), we can change the 

parameters of the potential energy model and predict the values of the 

frequencies which we expect to see in the IR (i.e., predict the normal modes’ 

frequencies of vibration). Working in 9 coordinates, while needing only three to 

describe the vibrations means that we have six “unused” coordinates, three for 

translation and three for rotation, which we could activate by suitable choices of 

initial positions and velocities of the 3 atoms (9 initial conditions in position, 9 

initial conditions in velocity). Whether translating as an entity (or not) and 

whether rotating (or not) the vibrations (when small) remain essentially the 

same.

Finally, to “understand” the normal modes, we can set the water 

molecule’s initial nuclear coordinates such that one of the three normal modes is 

(approximately) dominant, and watch for the dominant frequency of vibration 

which emerges, thus assigning (at least initial displacements) a normal mode to 

its associated frequency of vibration. Tinkering with the force constants while 
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exercising a particular normal mode allows us to obtain the value of that force 

constant which generates a frequency which agrees best with the experimental 

one.

Implementing The Molecular Mechanics Model in 

Maple
All Maple programs begin with some prologue material. In our case, we 

need to make the Fourier Transform available, hence “inttrans” in the following 

code fragment:

restart;
with(inttrans):
delta_r := 0.1e-8;
delta_theta := 0.1;
h := 1.0e-16;#(this is the time step in seconds)GOOD VALUE for m=10
kOH := 7.76e5;#dynes/cm, pg 218 Barrow
kalpha := 0.699e5*r_e^2;#dynes/rad
m := 10;# FFT power of 2

We choose to use 0.1 Angstrom as the amount of displacement an OH bond will 

be subject to and 0.1 degrees as the amount that the H-O-H angle will be 

distorted from its equilibrium position. Further, we pick a time step (in seconds) 

corresponding to 10 picoseconds.

Lastly, we choose the numerical values of the force constants we are 

going to use in modeling the motion of this molecule, as well as the power of 

two (2m) setting for the number of Fourier Transform points that we are going to 

collect.

Next, we define a magnitude function:
mag := proc (RealPart,ImaginaryPart)
sqrt(RealPart^2+ImaginaryPart^2);
end proc;
printlevel := 0;

and set the printlevel to a non-debugging value of 0.
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We will need the distance of separation between two nuclei, and define a 

function which will obtain that value:

dist := proc(r1,r2) local t;
t := sqrt((r1[1]-r2[1])^2+(r1[2]-r2[2])^2+(r1[3]-r2[3])^2);
return(t);
end proc;

We are ready to compute the forces as functions. We define one of the H 

atoms coordinates as x11, x12, and x13, i.e., kxjxixr ˆˆˆ
1312111 ++= , while we define 

the oxygen’s coordinates simply by O1, O2, and O3. This means that the 

difference vector ( ) ( ) ( )
1

ˆˆˆ
31321211112 OHrkOxjOxiOxr  =−+−+−=  which we 

here designate as 1t


 is given by:

t1 := [x11,x12,x13]-[O1,O2,O3]:
t2 := [x21,x22,x23]-[O1,O2,O3]:

We need the magnitudes of these vectors to calculate the forces, so we use our 

previously defined mag function:

t1_mag := sqrt(t1[1]^2+t1[2]^2+t1[3]^2):
t2_mag := sqrt(t2[1]^2+t2[2]^2+t2[3]^2):

Lastly, we need to know the magnitude of the instantaneous value of the H-O-H 

bond angle which we obtain using one of the vector dot product formulations:

theta_mag := arccos((t1[1]*t2[1]+t1[2]*t2[2]+t1[3]*t2[3])/(t1_mag*t2_mag)): 

i.e., 










 •
= −

21

211cos
OHOH

OHOH

rr

rr



ϑ . Now, we have all the functions necessary to obtain a 

functional description of the potential energy function for an isolated water 
molecule, subject to the simplest model possible. We have for the simplest 
potential energy model (translated into Maple):

t3 := (kOH/2)*((t1_mag-r_e)^2+(t2_mag-r_e)^2)+(kalpha/2)*(theta_mag-
theta_e)^2:
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We note that re is the designated “equilibrium” bond length, the value of r for 

which the potential energy curve has a minimum. Now we can take the nine 

partial derivatives required to get the three components of force for each of the 

three nuclei:

d11 := diff(t3,x11):
d12 := diff(t3,x12):
d13 := diff(t3,x13):
d21 := diff(t3,x21):
d22 := diff(t3,x22):
d23 := diff(t3,x23):
dO1 := diff(t3,O1):
dO2 := diff(t3,O2):
dO3 := diff(t3,O3):

For future use, we define a potential energy function which will be useful later 

(the last line is “returned” by the subroutine as its “value”):

V := proc(r_H_1,r_H_2,r_O) local t1,t2,t1_mag,t2_mag,theta_mag;
t1 := r_H_1-r_O;
t2 := r_H_2-r_O;
t1_mag := sqrt(t1[1]^2+t1[2]^2+t1[3]^2);
t2_mag := sqrt(t2[1]^2+t2[2]^2+t2[3]^2);
theta_mag := arccos((t1[1]*t2[1]+t1[2]*t2[2]+t1[3]*t2[3])/(t1_mag*t2_mag)): 
(kOH/2)*((t1_mag-r_e)^2+(t2_mag-r_e)^2)+(kalpha/2)*(theta_mag-
theta_e)^2:
end proc;

We need some water-specific constants defined:

r_e := 0.9584e-8;#cm
theta_e := evalf((104.5)*Pi/180);
theta_e_delta := evalf(delta_theta*Pi/180);

m_H_1 := 1.0078/(6.023e23):#grams/atom
m_H := m_H_1;#choose your isotope
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m_O := 16/(6.023e23);#choose your isotope

(substituting 2.014102 amu for 1.0078 would allow us to treat D2O, vide infra)

It is time to set up the normal mode indexing that will be used. Our 

indexing system defines  “norm_mode” = 0 to mean we will set the initial 

coordinates, while “normal mode” =1, 2, or 3 means we are attempting the 

textbook standard displacements according to which normal mode we are 

interested in, as indicated in the code:

norm_mode := 1;
r_O := [0,0,0];#set this in common, but change later
if norm_mode = 0 then 
  r_H_1 := [0.9e-8,0.5e-8,0]:
  r_H_2 := [-0.7e-8,0.6e-8,0]:
elif norm_mode = 2 then
#WAGGING
print(` theta varying normal mode`);
  x_H_1 := r_e*cos(theta_e/2+theta_e_delta);
  y_H_1 := r_e*sin(theta_e/2+theta_e_delta);
print (`x,y = `,x_H_1, y_H_1);
  x_H_2 :=  x_H_1;
  y_H_2 := - y_H_1;
  r_H_1 := [x_H_1,y_H_1,0];
  r_H_2 := [x_H_2,y_H_2,0];
print (`h-h dist = `,dist(r_H_1,r_H_2));
elif norm_mode = 1 then
#SYMMETRIC STRETCH
print(` symmetric stretch normal mode`);

  x_H_1 := (r_e+delta_r)*cos(theta_e/2);
  y_H_1 := (r_e+delta_r)*sin(theta_e/2);
  x_H_2 := x_H_1;
  y_H_2 := -y_H_1;
  r_H_1 := [x_H_1,y_H_1,0];
  r_H_2 := [x_H_2,y_H_2,0];
print (`h-h dist = `,dist(r_H_1,r_H_2));

elif norm_mode = 3 then
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#ANTISYMMETRIC STRETCH
print(` ANTI symmetric stretch normal mode`);

  x_H_1 := (r_e+0.2e-8)*cos(theta_e/2);
  y_H_1 := (r_e+0.2e-8)*sin(theta_e/2);
  x_H_2 := x_H_1;
  y_H_2 := -y_H_1;
  r_H_1 := [x_H_1,y_H_1,0];
  r_H_2 := [x_H_2,y_H_2,0];
r_O := [0.1e-8,0,0];

print (`h-h dist = `,dist(r_H_1,r_H_2));

end if;
print (`starting H1 coords = `,r_H_1);
print (`starting H2 coords = `,r_H_2);
print (`starting O coords = `,r_O);

We have included some explanatory printing to help understand what is going 

on.

Arbitrarily, we assign all the nuclei zero velocity (initially) although 

experimentation here is certainly encouraged. We also zero the forces!

v_H_1 := [0,0,0]:
v_H_2 := [0,0,0]:
v_H_1_p := [0,0,0]:
v_H_2_p := [0,0,0]:
v_O := [0,0,0]:
v_O_p := [0,0,0]:

F_H_1 := [0,0,0]:
F_H_2 := [0,0,0]:
F_O := [0,0,0]:
F_H_1_p := [0,0,0]:
F_H_2_p := [0,0,0]:
F_O_p := [0,0,0]:

Next, we compute the potential energy at the start of the motion:
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V_start :=V(r_H_1,r_H_2,r_O):
print (`starting potential energy = `,V_start);

Here, we use “m” defined at the outset, and set up some arrays which will be 

used to gather information:

n_stop := 2^m;
l := array(1..n_stop);
y := array(1..n_stop);

All the preparatory matters have been taken care of and we are ready to 

start simulating, one time step at a (computer) cycle. We need a control 

statement:

For I from 1 by 1 to n_stop do

And then, as the saying went, “away we go”.

Inside each time step, preparatory to calculating the instantaneous force 

on each nucleus, we substitute the now current values of all the coordinates into 

the appropriate partial derivative terms, and evaluate them numerically. The 

minus sign is used to connect the force to “minus” the gradient, as noted above. 

We have :

t5 := subs(x11=r_H_1[1],x12=r_H_1[2],x13=r_H_1[3], 
x21=r_H_2[1],x22=r_H_2[2],x23=r_H_2[3],
O1=r_O[1],O2=r_O[2],O3=r_O[3],
d11):
F_H_1[1] := -evalf(t5):

t5 := subs(x11=r_H_1[1],x12=r_H_1[2],x13=r_H_1[3], 
x21=r_H_2[1],x22=r_H_2[2],x23=r_H_2[3],
O1=r_O[1],O2=r_O[2],O3=r_O[3],
d12):
F_H_1[2] := -evalf(t5):
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t5 := subs(x11=r_H_1[1],x12=r_H_1[2],x13=r_H_1[3], 
x21=r_H_2[1],x22=r_H_2[2],x23=r_H_2[3],
O1=r_O[1],O2=r_O[2],O3=r_O[3],
d13):
F_H_1[3] := -evalf(t5):
   
t5 := subs(x11=r_H_1[1],x12=r_H_1[2],x13=r_H_1[3], 
x21=r_H_2[1],x22=r_H_2[2],x23=r_H_2[3],
O1=r_O[1],O2=r_O[2],O3=r_O[3],
d21):
F_H_2[1] := -evalf(t5):

t5 := subs(x11=r_H_1[1],x12=r_H_1[2],x13=r_H_1[3], 
x21=r_H_2[1],x22=r_H_2[2],x23=r_H_2[3],
O1=r_O[1],O2=r_O[2],O3=r_O[3],
d22):
F_H_2[2] := -evalf(t5):

t5 := subs(x11=r_H_1[1],x12=r_H_1[2],x13=r_H_1[3], 
x21=r_H_2[1],x22=r_H_2[2],x23=r_H_2[3],
O1=r_O[1],O2=r_O[2],O3=r_O[3],
d23):
F_H_2[3] := -evalf(t5):

t5 := subs(x11=r_H_1[1],x12=r_H_1[2],x13=r_H_1[3], 
x21=r_H_2[1],x22=r_H_2[2],x23=r_H_2[3],
O1=r_O[1],O2=r_O[2],O3=r_O[3],
dO1):
F_O[1] := -evalf(t5):
t5 := subs(x11=r_H_1[1],x12=r_H_1[2],x13=r_H_1[3], 
x21=r_H_2[1],x22=r_H_2[2],x23=r_H_2[3],
O1=r_O[1],O2=r_O[2],O3=r_O[3],
dO2):
F_O[2] := -evalf(t5):

t5 := subs(x11=r_H_1[1],x12=r_H_1[2],x13=r_H_1[3], 
x21=r_H_2[1],x22=r_H_2[2],x23=r_H_2[3],
O1=r_O[1],O2=r_O[2],O3=r_O[3],
dO3):
F_O[3] := -evalf(t5):
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Having the instantaneous forces, we now can obtain the (primed) new positions 

of the nuclei as predicted from the old ones, the velocities of the nuclei and the 

forces on the nuclei, according to Verlet’s algorithm.

  r_H_1_p := r_H_1 + h*v_H_1 + ((h^2)/(2*m_H))*F_H_1;
  r_H_2_p := r_H_2 + h*v_H_2 + ((h^2)/(2*m_H))*F_H_2;

  r_O_p := r_O + h*v_O + ((h^2)/(2*m_O))*F_O;
(Were we to allow the two masses of the H nuclei to be different, e.g., allowing 

one to be about double of the other (for example), then we could treat HDO as 

well. This would require slight coding changes in the center line (above). Of 

course, we could add code for Tritium in the mass definitions, and treat all the 

isotopomers.) 

Once we’ve “moved” the nuclei, we need to recalculate the forces, which 

is indicated below (some repetitive code has been removed).

 

 
t5 := 
subs(x11=r_H_1_p[1],x12=r_H_1_p[2],x13=r_H_1_p[3],x21=r_H_2_p[1],x2
2=r_H_2_p[2],x23=r_H_2_p[3],
O1=r_O_p[1],O2=r_O_p[2],O3=r_O_p[3],
d11):
F_H_1_p[1] := -evalf(t5):

t5 := 
subs(x11=r_H_1_p[1],x12=r_H_1_p[2],x13=r_H_1_p[3],x21=r_H_2_p[1],x2
2=r_H_2_p[2],x23=r_H_2_p[3],
O1=r_O_p[1],O2=r_O_p[2],O3=r_O_p[3],
d12):
F_H_1_p[2] := -evalf(t5):
#repetitive code omitted here
t5 := 
subs(x11=r_H_1_p[1],x12=r_H_1_p[2],x13=r_H_1_p[3],x21=r_H_2_p[1],x2
2=r_H_2_p[2],x23=r_H_2_p[3],
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O1=r_O_p[1],O2=r_O_p[2],O3=r_O_p[3],
dO3):
F_O_p[3] := -evalf(t5):

We also need to recompute the velocities (primed) to their new values, based 
on the new forces (primed)
v_H_1_p := v_H_1 + (h/(2*m_H))*(F_H_1_p + F_H_1):
v_H_2_p := v_H_2 + (h/(2*m_H))*(F_H_2_p + F_H_2):
v_O_p := v_O + (h/(2*m_O))*(F_O_p + F_O):

r_H_1 := r_H_1_p:#update coordinates
r_H_2 := r_H_2_p:
r_O := r_O_p:

(We are again forced to change the coding slightly if we are interested in treating 

water with two unequal hydrogen isotopes.) Next, we need to update the 

coordinates and velocities from the new values in this cycle to the “to be old 

values” for the next cycle, i.e.,

v_H_1 := v_H_1_p:#update velocities
v_H_2 := v_H_2_p:
v_O := v_O_p:

 We’ve achieved what was required, one cycle of the simulation. Now we need 

to do some auxiliary computations, which will allow analysis of our results. 

First, we compute the magnitudes of the velocities of the three nuclei, precursors 

of the computation of the total kinetic energy of the molecule:

v_H_1_mag := sqrt(v_H_1[1]^2+v_H_1[2]^2+v_H_1[3]^2);#for kinetic 
energy
v_H_2_mag := sqrt(v_H_2[1]^2+v_H_2[2]^2+v_H_2[3]^2);
v_O_mag := sqrt(v_O[1]^2+v_O[2]^2+v_O[3]^2);

Next, we zero the imaginary part of the Fourier transform output (not really 

necessary) and then compute the kinetic energy, the potential energy, and the 

total energy at this time step.We have: 

 y[i] := 0;#imaginary part
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  KE(i) := 
1/2*(m_H*v_H_1_mag^2+m_H*v_H_2_mag^2+m_O*v_O_mag^2):#
  PE(i) := V(r_H_1,r_H_2,r_O):
  E_total(i) := evalf(KE(i)+PE(i)):
  E_totaloverV[i] := (E_total(i)/V_start)*100;
  E_totaloverV_plot(i) := (E_total(i)/V_start)*100;

 Lastly, but most importantly from the perspective of visualization, we compute 

the H1-H2 distance (instantaneously) for two purposes. First, we wish to plot this 

resultant value set as a function to “time” (hence r_plot) and second, we will 

carry out our Fourier transform on it also (hence l[i]), 

 l[i] := dist(r_H_1,r_H_2)*1e8:#convert to angstrom
  r_plot(i) := l[i]:
  yy[i] := 0;#imaginary part

and then we’re done, with a single time step. The loop proceeds n_stop times.

end do;

Next, we carry out the Fourier Transform on l[i],y[i] 

i := 'i':
FFT(m,l,y);

and plot the internuclear (proton-proton) separation as a function of “time”:

print(` r_plot(i):`);
PLOT(POINTS(seq([i,r_plot(i)],i=1..n_stop), 
SYMBOL(DIAMOND),LEGEND(`r versus t`)));

Then, we plot the Fourier transform of that data:

i := 'i':
FreqSpectrum := [seq([(i-1),(2*mag(l[i],y[i])/(2^m))],i=1..floor(((2^m)/2)))]:
#plot([seq(FreqSpectrum[j],j=2..floor(((2^m)/2)))],title="Fourier Transform");
plot([seq(FreqSpectrum[j],j=2..40)],title="Fourier Transform");
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Note that the commented out line (above) would plot the entire Fourier 

Transform, but lowering the upper limit of the sequence allows the reader to 

better see where the maximum is (or maxima are).

Next, we compute some reportable molecularly interesting results of 

these computations:

frequency := number_of_cycles/(h*n_stop);
print(`sec^-1 = `,frequency,` times # of peaks`);
print(`cm^-1 = `,evalf(frequency/3e10),` times # of peaks`);

print(` KE(i):`);
PLOT(POINTS(seq([i,KE(i)],i=1..n_stop), 
SYMBOL(CROSS),LEGEND(`kinetic energy versus t`)));
print(` PE(i):`);

PLOT(POINTS(seq([i,PE(i)],i=1..n_stop), 
SYMBOL(CIRCLE),LEGEND(`potential energy versus t`)));
print(` E_total(i):`);
l_plot := [[ n, E_totaloverV(n)] $n=1..n_stop]:
 plot(l_plot, n=1..n_stop, style=line,symbol=circle,labels=[`time
 step`,`% deviation of total energy`],labeldirections=[HORIZONTAL,
 VERTICAL]);

And we’re done. The last bit of code is included for completeness, i.e., it’s 

optional. However, it is really interesting to see that the kinetic and potential 

energies are 180o of out phase, and that when added together give almost a 

perfectly constant total energy (one has to check the ordinate of the energy plot 

to see that the variations in total energy are incredibly small, but real). These last 

plots are not included in this manuscript.

Using the Code (1)
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Choosing force constants, (7.76x105dynes/cm for kOH and 

0.699x105*(0.9584)2 dynes/rad) from older literature allows us to test the basic 

concept, i.e., run the code using the three normal mode choices, to check that we 

get suitable harmonic motion. For the bond angle stretch mode, we obtain nice, 

in fact beautiful, harmonic motion (see Figure 1). 

The Fourier Transform of this motion is shown in Figure 2, where one sees that 

there are about 9 cycles during the total sample.

For the anti-symmetric mode on the other hand, we find, indeed, that the 

motion is anything but harmonic, which is quite suggestive of the need to 

improve the initial coordinate guesses that we made. Figure 3 shows this 

complex motion (as reflected in the rHH(t) data). Perhaps it might be wise to 

tinker with the initial velocities as well as the initial positions in this case.

Using the Code (2)
There is no question that seeing the motion vividly displayed this way, 

accompanied by the Fourier Transform which informs us of the frequencies, is 

gratifying. But one can do more with the simulation.

First, one can obtain the best force constants (inside the model definition) 

consonant with the experimental data. Some experimental data is shown in Table 

1.

We can adjust the time step (h) in the code, to get as close as possible to 

an integral number of cycles inside the 2m datum, and then calculate the resultant 

frequency. Tinkering with the force constants would then allow getting the 

closest fit of simulation frequencies to experimental frequencies. Then, with just 

a slight alteration in the coding, one could, for instance, predict the spectrum of 

HDO. Consider that the frequency (υ2) is given primitively by the expression:
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1
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1
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_
5.9 −=×

×
=

×
≈= cm

stopnh
ν

Tinkering with the two force constants and getting a closer approximation to an 

integral number of cycles/experiment (varying h) yields frequencies which can 

be made to come as close as one desires to the experimental value.

 By changing the velocity components, one can see that they are, when 

not overly large, ignorable. This means that the separation of vibration from 

rotation and translation is warranted under those assumptions. 

 By changing the initial coordinates to reflect enormous distortions, one 

can see the motion deteriorate rapidly into something ostensibly chaotic.

Using the Code (3)
Another application which might be of interest consists of altering the 

potential energy model employed. Clearly, one could add cross terms to the 

simplified function (see Equation 1). Completely different models might also be 

worthy of exploration. Finally, extending the code to include more than 3 nuclei, 

or changing the nature of the nuclei considered in the 3 nucleus case, is 

straightforward.  

Discussion
It is easy to hand wave arguments in elementary physical chemistry 

which lead students to a glib form of understanding of topics which, upon closer 

investigation, are really completely confusing to students. The example used 

here allows a form of concrete realization of vibrational energy concepts which 

elude understanding under normal teaching conditions. Its inclusion as an 

16



exercise, especially for students who will not continue in physical chemistry, 

seem warranted. The hard thing is to understand the V=f(nine coordinates) and 

therefore that iF


therefore are also functions of nine coordinates, and is non-

trivial to derive and/or evaluate.
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Tables

H2O(6) D2O(5) H2O(alternate)(7)

ν1 3832.17 2763.80 3657
ν2 1648.47 1206.39 1594.7
ν3 3942.53 2888.78 3755.7

Table1: Experimental IR frequencies for water. 
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Figure 1: Bond angle stretching normal mode, showing beautiful 

harmonic motion.

20



Figure 2. The Fourier Transform of the oscillation shown in Figure 1. There are 

about 9 cycles in the total motion displayed.

21



22



Figure 3: The rHH distance as a function of time, showing a complex motion 

indicative that a single normal mode is not being used.
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