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Invitation to Magnetism and Magnetic Resonance

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
(Dated: June 15, 2006)

I. SYNOPSIS

With NMR so ubiquitous in modern life, it is reason-
able to study spins in magnetic fields, hence this first
attempt.

II. UNITS

Coulomb’s Law

F = k
QQ′

r2

is an empirical law linking the force (F) between two
charges, Q and Q’, separated by a distance of r. The
constant is required to make the equation true depending
on the units involved. In elementary physics, using the
mks system, we have

F (newtons) =
1

4πε0

Q(Coulomb)Q′(Coulomb)
r2(m2)

where ε0 is called the permittivity constant. Its measured
value is about 8.85× 10−12coul2/(nt−m2).

In our atomic/molecular work, it is more convenient to
use units which are less common. Specifically, in modified
cgs units, we have

F (dynes) =
q(statcoulomb)q′(statcoulomb)

r2(cm2)

which defines a statcoulomb. Thus, a force of 1 dyne is
exerted by two charges of a statcoulomb each if separated
by 1 cm. These are not SI units! But they allow us to do
Bohr theory (and other work) without worrying about
the permittivity of free space! In these units, the charge
on the electron is 4.8 × 10−10statcoulomb which is the
same as 1.6 × 10−19Coulomb, a convenient reference for
conversion between the two systems.

The electric field associated with a charge (Q) at the
origin, is

E =
1

4πε0

Q(Coulomb)
r2(m2)

where we are using a unit test charge (1 Coulomb) to
probe the force at the point (x, y, z).

It is the magnetic field which causes the problems.
First, we start with the Lorentz force:

~F = q~v ⊗ ~B + q ~E
which includes the electric field just discussed [1]. In the
cgs system, B is measured in maxwells/(square cm) i.e,
in gauss. Then

1gauss = 10−4 weber

m2
= 1

maxwell

cm2

(See Figure 2).
We start with rationalized units versus unrationalized,

see Figure 1.

III. EQUIVALENCE OF ORBITING ELECTRON
AND MAGNETIC MOMENT

For a magnetic field (vector) ~B acting on an arm of a
current loop, a square current loop and a Bohr orbit are
similar (see Figure 3). The force on each single charge
(q) traveling in the arm comes from the Lorentz force [2]:

~F = q~v ⊗ ~B (3.1)

Since ~v is perpendicular to ~B (in our case), the cross
product simplifies. The current ı is given by:

ı → n(
charge

cm3
)× q(

statcoulomb

charge
)× v(

cm

sec
)× σ(cm2) =

statcoulomb

sec
(3.2)

where σ is the cross sectional area of the wire-loop, and the force on each charge is:

| ~F |= q | ~v || ~B | sin 90o = qvB (3.3)
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which, in the c.g.s. system is

statcoulomb×
( cm

sec

) (
dyne sec

statcoulomb cm

)
= dyne (3.4)

where we have defined B’s c.g.s. units as

dyne sec

statcoulomb cm
(3.5)

or, in m.k.s. terms, we have for the force (equivalent of
Equation 3.4)

Coulomb×
(

meter

second

)
×

(
Newton second

Coulomb meter

)
= Newton

(3.6)
which defines one Tesla [3] as (the equivalent of Equation
3.5)

1 Tesla =
Newton second

Coulomb meter
(3.7)

or

B ≡ Newton second

Coulomb meter
×105 dynes

Newton
×10−2 meter

cm
(3.8)

or

1 Tesla = 103 dyne sec

Coulomb cm
(3.9)

and since 1 C = 2.99790× 109statcoulomb, we have

1 Tesla = 103 dyne sec

Coulomb cm
× 1Coulomb

2.99790× 109 statcoulomb
(3.10)

which is

1 Tesla = 0.3335683× 10−6 dyne sec

statcoulomb cm
(3.11)

and remember that from Coulomb’s law, a statcoulomb
is a dyne1/2cm. i.e.,

1 Tesla = 0.3335683× 10−6 dyne sec

dyne1/2cm2
=

dyne1/2sec

cm2

(3.12)
which is the useful c.g.s form of the Tesla

Since the number of charges is n× a× σ, the force on
one arm of the loop (of length ‘a’) is

F = (n× a× σ)× q × v ×B → ıaB (3.13)

(
Coulomb

second

)
×meter ×

(
Newton second

Coulomb meter

)
= Newton

(3.14)
which is reversed on the other (opposite arm) leg of the
loop.

The loop is a×b in area (and 2a+2b in circumference),
the moment arm about the pivot point is b

2 sinα if α is
the angle between the loop and the field. The moment
arm is of length ‘b/2’, i.e., from the axis to a horizontal
arm is b/2 (cm). The torque (τ) then is

τ(orque) = |~r ⊗ ~F | = 2
(

b

2
sinα

)
ıaB → Newton meter (3.15)

but, since a ×b is the area (A) of the loop, we have

τ(orque) = iAB sinα → Newton meter (3.16)

Commonly, this torque is related to a magnetic moment
equivalent, i.e.,

~τ(orque) = ~µ× ~B →
(

meter2Coulomb

second

) (
Newton second

Coulomb meter

)
→ Newton meter (3.17)

in analogy with an electric dipole in an electric field. A
current loop is equivalent to a magnetic moment, a tiny
bar magnet.

We assume that the above would hold for a Bohr orbit.

IV. BOHR THEORY INTERPRETATION OF
THE ORBITING ELECTRON’S MAGNETIC

MOMENT

At the atomic level, the (Newton) Meter-Kilogram-
Second (m.k.s) Scale is a bit cumbersome, especially
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when we are dealing with charged particles. It is more
convenient to work in the cgs system, with charges in
statcoulomb. The major advantage of using statcoulombs
is that it translates directly, without permitivities and
dielectric constant considerations, into forces when em-
ployed in Coulomb’s Law. This allows us to write that

1 statcoulomb = 1 dyne1/2cm (4.1)

since

F =
q × q′

r2
→ statcoulomb2

cm2
= dynes (4.2)

From Bohr Theory we had

r =
n2h̄2

Zme2
→ erg2 sec2

(gram statcoulomb2)
=

(
erg2 sec2

(gram dyne cm2)

)
= cm (4.3)

and [4]

mr2θ̇ = nh̄ = pθ → erg sec (4.4)

so, solving for θ̇ we have

θ̇ =
nh̄

mr2
→ erg sec

gram cm2
=

dyne sec

g cm
=

gm (cm/sec2) sec

g cm
=

1
sec

(4.5)

and then the current (= statcoulomb/sec) =
charge/transit-time = −e/τ , where [5] τ is the pe-
riod.

∆θ

∆t
= θ̇ =

nh̄

mr2
=

2π

τ
(4.6)

so

charge

period
=

e

τ
= i = − enh̄

2πmr2
→ statcoulomb erg sec

gram cm2
=

statcoulomb

sec
(4.7)

but, since the area is πr2, we have

iA = − enh̄

2πmr2
πr2 = −enh̄

2m
→ statcoulomb cm2

sec
=

statcoulomb erg sec

gram
(4.8)

which defines the Bohr magnetic moment

µB = − eh̄

2m
→ dyne1/2cm erg sec

gram
=

dyne1/2cm2

sec
(4.9)

i.e.,

=
4.8× 10−10statcoulomb× 6.627× 10−27erg sec

2× 9.1094× 10−28grams× 2× π
= 0.27781× 10−9 dyne1/2cm2

sec
(4.10)

known as the Bohr magneton. This works out to be (since the charge on the electron is 1.6 × 10−19Coulomb and
4.8× 10−10statcoulomb)

0.27788× 10−9 statcoulomb erg second

Tesla

(
1.6× 10−19Coulomb

4.8× 10−10statcoulomb

)
×

103 grams
kilograms

107 erg
Joule

(4.11)
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= 0.0926× 10−22 Joule Coulomb second

kilogram
(4.12)

= 0.0926× 10−22 Joule Coulomb second

kilogram

Newton second
Coulomb meter

Tesla
=

J

T
(4.13)

which compares to the literature values of 9.27402× 10−24J/T . or 9.27402× 10−21erg/G.

V. THE NUCLEAR MAGNETIC MOMENT

The nuclear magnetic moment, obtained by changing
the mass from that of the electron to that of the proton,
is

µN = 9.26× 10−24 J

T
× 9.1094× 10−28

1.67× 10−24
(5.1)

which is, in mks,

50.5× 10−28 J

T
(5.2)

which compares with literature values of 5.0505 ×
10−24erg/G i.e., 5.0508× 10−27J/T

HOWEVER, the true (measured) nuclear magnetic
moment (for a bare proton) is µproton = 2.79277µN .

VI. THE TORQUE

We then have

τ(orque) = ıAB sinα = −enh̄

2m
B sinα (6.1)

which is, finally (using Equation 4.9),

τ(orque) = nµBB sinα = ~µ× ~B →
(

dyne1/2cm2

sec

)
×

(
dyne sec

statcoulomb cm

)
= dyne cm (6.2)

The magnetic moment, ~µ, is proportional to the an-
gular momentum (` = nh̄, Bohr), with a proportionality
constant γ, i.e.,

~µB =
eh̄

2me
= γh̄ (6.3)

so as the angular momentum precesses in an external
magnetic field, so does the magnetic moment vector, vide
infra.

VII. ENERGY OF AN ORBITING ELECTRON
IN AN ARBITRARY MAGNETIC FIELD

The energy associated with rotating the current loop
(Bohr orbit) about the axis perpendicular to the field
(orienting the loop relative to the field), is

E =
∫ α, final angular position

reference position

τ(α)dα (7.1)

i.e.,

E =
∫ α

90o

τ(x)dx (7.2)

which gives

E = −nµBB cos α (7.3)

or

E = −n~µB · ~B → dyne cm = ergs (7.4)

VIII. LARMOUR’S THEOREM

We have

m~̈r = ~F + e~̇r × ~B (8.1)

If we specialize (arbitrarily) to make the magnetic field
point along the z-axis, then

mẍ = Fx + eBẏ (8.2)

mÿ = Fy − eBẋ (8.3)

and

mz̈ = Fz (8.4)
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What is ~F? It is

~F =
Ze2r̂

r3
=

statcoulomb2

cm2
→ dynes (8.5)

i.e., the Coulomb force. Z is the atomic number, e is the
charge on the electron (in dyne1/2cm, i.e., statcoulombs).
This means

Fx =
Ze2x√

x2 + y2 + z2
3 (8.6)

with similar terms for y and z,

Fy =
Ze2y√

x2 + y2 + z2
3 (8.7)

Fz =
Ze2z√

x2 + y2 + z2
3 (8.8)

It is common to begin treating Larmour precession us-
ing a rotating coördinate system attached to the original
one, sharing a common z-axis. Therefore, we need to
make a ”side trip” to coördinate transformations. The
situation at hand concerns two dimensions, x and y. Rel-
ative to this ‘couple’ {x(t),y(t)}, we wish to introduce
one which is rotating i.e., {x’(t),y’(t)}, where the primed
coördinate system is rotating about the z-axis relative to
the original {x(t),y(t)} system. Once per revolution, x’
and y’ will lie exactly juxtaposed upon x and y.

The transformation equations are:

x′(t) = x(t) cos ωt− y(t) sinωt (8.9)

y′(t) = x(t) sinωt + y(t) cos ωt (8.10)

which we re-write in matrix notation(
x′(t)
y′(t)

)
=

(
cos ωt − sinωt
sinωt cos ωt

) (
x(t)
y(t)

)
(8.11)

(see Figure 4).
This set of equations are used to transform from

{x(t),y(t)} ↪→ {x’(t),y’(t)}. The reverse of this can be
obtained in two steps. First, multiply the top equation
(1) by cosine, and the lower one (2) by sine, and add. We
obtain

x(t) = x′(t) cos ωt + y′(t) sinωt (8.12)

and then multiple the top equation by sine and the lower
one by cosine, and subtract, yielding

y(t) = −x′(t) sinωt + y′(t) cos ωt (8.13)

which, in matrix form is:(
x(t)
y(t)

)
=

(
cos ωt sinωt
− sinωt cos ωt

) (
x′(t)
y′(t)

)
(8.14)

You tell me an instantaneous value of x and y, and I will
tell you the instantaneous values of x’ and y’ (Equation
8.11), and vice versa using Equation 8.14.

It is interesting to substitute the result of one trans-
formation into the other. This should result in ‘no trans-
formation’, since we are doing and undoing the transfor-
mation. We have:(

x(t)
y(t)

)
=

(
cos ωt sinωt
− sinωt cos ωt

) (
cos ωt − sinωt
sinωt cos ωt

) (
x(t)
y(t)

)
which is(

cos ωt sinωt
− sinωt cos ωt

) (
cos ωt − sinωt
sinωt cos ωt

)
=

(
1 0
0 1

)
which seems perfectly reasonable!

A. Taking time derivatives of coördinates

It is clear that

ẋ =
dx(t)

dt
=

dx′(t)
dt

cos ωt +
dy′(t)

dt
sinωt− x′(t)ω sinωt + y′(t)ω cos ωt (8.15)

and

ẏ =
dy(t)
dt

= −dx′(t)
dt

sinωt +
dy′(t)

dt
cos ωt− x′(t)ω cos ωt− y′(t)ω sinωt (8.16)

and therefore

ẍ =
d2x(t)

dt2
= ẍ′(t) cos ωt + ÿ′(t) sinωt + 2ω (−ẋ′ sinωt + ẏ′ cos ωt)− ω2 (x′(t) cos ωt + y′(t) sinωt)

so

ÿ =
d2y(t)
dt2

= −ẍ′(t) sinωt + ÿ′(t) cos ωt + 2ω (−ẋ′ sinωt + ẏ′ cos ωt) + ω2 (−x′(t) sinωt + y′(t) cos ωt)
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and substituting into Equation 8.2

ẍ = ẍ′(t) cos ωt + ÿ′(t) sinωt + 2ω (−ẋ′ sinωt + ẏ′ cos ωt)− ω2 (x′(t) cos ωt + y′(t) sinωt)

=
Fx

m
+

eB

m
(−ẋ′ sinωt + ẏ′ cos ωt− ω(x′(t) cos ωt + y′(t) sinωt))

and,

ÿ′ = −ẍ′(t) sinωt + ÿ′(t) cos ωt + 2ω (−ẋ′ cos ωt + ẏ′ sinωt) + ω2 (−x′(t) cos ωt + y′(t) sinωt)

so, substituting into Equation 8.3

ÿ′ =
Fy

m
+

eB

m
(−ẋ′ cos ωt + ẏ′ sinωt− x′(t)ω sinωt + y′(t)ω cos ωt)

We note that the Coulomb force on the electron is not ef-
fected substantially by the transformed coördinates, since
x and y are merely ”changing places”, while r stays con-
stant (z stays constant no matter what) (see Figure 5).
First, we assume that terms of the order ω2 are small
enough to neglect. Second, we start our clock at t=0
exactly when the x(t) and x’(t) axis are superimposed.
Then, we have:

ẍ′(t) cos ωt + 2ω (ẏ′ cos ωt)− ω2 (x′(t) cos ωt)

=
Fx

m
+

eB

m
(ẏ′ cos ωt + x′(t)ω cos ωt) (8.17)

and

ÿ′(t) cos ωt + 2ω (ẏ′ cos ωt)− ω2 (y′(t) cos ωt)

=
Fy

m
+

eB

m
(ẏ′(t) cos ωt + x′(t)ω cos ωt) (8.18)

(see Figure 6). If we were to choose

2ω =
eB

m
→

statcoulomb dynesec
statcoulomb cm

gram
= sec−1

(see Equation 3.4) then the velocity terms would disap-
pear! This is the Larmour frequency:

ω =
eB

2m

Approximately, if we choose to rotate a coördinate sys-
tem at this particular frequency, then the magnetic mo-
ment would appear stationary in this rotating coördinate
system.

IX. PRECESSION OF A MAGNETIC MOMENT

Regardless of whether a magnetic moment originates
in orbital motion of charges or intrinsically in a nucleus,

externally, we see a magnetic dipole in space, interacting
with external (to it) magnetic fields. How does it react?

We start with the elementary definition of torque,

~L = ~r ⊗ ~p

so that

d~L

dt
=

~p

m
⊗ ~p + ~r ⊗ ~F = ~r ⊗ ~F = ~τorque

where we have assumed Newton’s second Law in equate
the time derivative of the momentum with the force, and
that ~p⊗ ~p is zero!

~τ(orque) = ~µ× ~B (9.1)

and ~µ = γ~L Since d~µ
dt = −γ ~B ⊗ µ (and we assume the ~B

points along the z-axis) which is

dµx

dt
î +

dµy

dt
ĵ +

dµz

dt
k̂ = −γ

∣∣∣∣∣∣
î ĵ k̂
0 0 B
µx µy µz

∣∣∣∣∣∣
we see immediately that the z-component of the magnetic
moment never changes! [6] Expanding, we have

dµx

dt
+ γBµy = 0

dµy

dt
+ γBµx = 0

a solution of which is

~µ = (AcosγBt) î + (AsinγBt) ĵ + a constant k̂

which means that the µ vector is precessing about the z-
axis, with its x- and y-components interchanging during
the precession.
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X. AN ALTERNATIVE DERIVATION OF THE
PRECESSION

~τorque = γ~µ⊗ ~B

is the torque on a spin (1/2) particle in a static magnetic
field ~B. Then

d~µ

dt
= ~τorque

or

d~µ

dt
= −γ ~B ⊗ ~µ

If we write

~µ = −|~µ|
(
î sin θ cos φ + ĵ sin θ sinφ + k̂ cos θ

)
then

~B · ~µ = −|~µ|
î ĵ k̂
0 0 B

sin θ cos φ sin θ sinφ cos φ

So

dµx

dt
= −γB|~µ| sin θ sinφ =

d|~µ| sin θ cos φ

dt
(10.1)

dµy

dt
= γB|~µ| sin θ cos φ =

d|~µ| sin θ sinφ

dt
(10.2)

dµz

dt
= 0 =

d|~µ| cos θ

dt
(10.3)

The last equation may be integrated directly, leaving

cos θ = constant

assuming the |~µ| is constant (as it must be).
In order to integrate Equation 10.1 and Equation 10.2

we write

γB sin θ sinφ =
d sin θ cos φ

dt
= − sin θ cos φ

dφ

dt
(10.4)

−γB sin θ cos φ =
d sin θ sinφ

dt
= sin θ sinφ

dφ

dt
(10.5)

which means that

−γB =
dφ

dt

or

φ = −γBt + C

where C is a constant (usually called the phase angle).

XI. NMR

If we assume that the magnetic moment we are dealing
with is due to a proton, i.e., a spin one half particle,
then we know there are two orientations possible, i.e.,
two possibilities of the state of the proton, one with the
magnetic moment ‘up’, and the other ‘down’. The energy
of these two states are

Edown =
1
2
γB

and

Eup = −1
2
γB

with a ∆E

∆E = γB = gNµNB

(see Figure 7). where gN = µ is the “nuclear factor”, and
B is the magnetic field strength (see Figure 8). Empiri-
cally, gN = γ = 5.5856912. One has, then,

∆E

h
= ν =

gNµNB

h

which, for a 1 Tesla Field would be

ν =
5.5856912× 5.0508014× 10−27J/T × 1T

6.627× 10−34J − sec
= 4.26×107seconds−1 = 42.6MHz

XII. PERTURBING WITH AN EXTERNAL
MAGNETIC FIELD

In the Continuous Wave (CW) experiment, we super-
impose a rotating magnetic perturbation field on the
above system, choosing to apply that field in the x-y
plane only, at right angles to the main field which orig-
inally set up the energy differences. We make this field
Bo cos ωt where the strength of the perturbation Bo is
small, and the frequency ω is tunable. As we change
ω we tune through the frequency ω set up by the main
magnetic field, and at this ωtuned value, transitions are
observed.

XIII. BLOCH’S EQUATIONS

In order to talk about spin relaxation, one needs
to first obtain the differential equations governing the
macroscopic spin. Normally, this discussion concerns the
macroscopic magnetic moment, rather than individual
spins. The macroscopic magnetic moment is normally
called ~M . with three components, one of which, cho-
sen arbitrarily, coincides with the z-axis and the external
applied magnetic field.



8

If the microscopic spins have aligned themselves prop-
erly in the external field, with Nα in the α state and Nβ

in the β state, then

Mz = γN h̄(Nα −Nβ)

where γN is the magnetogyric ratio appropriate.
We know that at thermal equilibrium

Nα

Nβ
= egN

eh̄
2mc B/kT = egN µBB/kT

When the field is turned off, the z-component of mag-
netic moment will approach its final value exponentially
in time, so that the above ratio approaches 1.

1
γN h̄

dMz

dt
= −Nα −Nβ

T1

where T1 is defined as the spin-lattice relaxation charac-
teristic time. or

dMz

dt
= −Mz

T1

When the magnetic field is different from zero but con-
stant, Mz tends to a constant value, M0, related to the
macroscopic static magnetic susceptibility. Now, one has

dMz

dt
= −Mz −M0

T1

and

Mx

dt
= −Mx

T2

and

My

dt
= −My

T2

where T2 is the transverse relaxation time.
Since the bulk magnetic moment is the sum of all the

individual magnetic moments, and since they are actually
precessing about the magnetic field, one has

d ~M

dt
= γN

~M ⊗ ~B

in the absence of relaxation. We know that this latter
leads to

Mx

dt
= −Mx

T2
+ γNMyBz

and

My

dt
= −My

T2
+ γNMxBz

and finally

dMz

dt
= −Mz −M0

T1

XIV. ALTERNATIVE VIEW OF CURRENT
LOOP (ADDRESSING SPIN-SPIN ETC.,

COUPLING ORIGINS

We can view the current loop as a single turn of
a solenoid, i.e., creating a magnetic field which passes
through the center of the loop. We have, using the Law
of Biot and Savart

~δB = i
~dσ × ~r

r3

~δB = Ki
dσ × r cos 90o

r3
= Ki

dσ

r2

where ~δB is perpendicular to the ~r vector, indicated as
δB and K is a proportionality constant whose value is
exactly 10−7 weber

ampere meter which is often written as

µo

4π
= K

where

µo = 12.57× 10−7 weber

ampere meter

(see Figure 9). on the figure. The component of δB along
the x-axis from this piece of current loop is

δBx =
µo

4π
i
dσ

r2
sinα

and if we add up the contributions from all elements of
the loop by integrating around it, obtaining 2πR (the
circumference) we obtain

Bx =
µo

4π
i
sinα2πR

r2

But sinα is R/r, so we obtain

Bx =
µo

4π
i
πR2

r3

and if we now translate the point of interest to the origin,
so that r → R, we obtain

Bx =
µo

4π
i
πR2

R3
→ weber

ampere meter

ampere

meter
=

weber

meter2
= tesla

Bx =
µo

4
i

R
→ tesla =

Newton second

Coulomb meter

This result says that there is a magnetic field at the
origin, caused by the current loop. It is as if there were
no current loop. but instead there was a little bar mag-
net at the origin (see Figure 10). It is clear that if the
current element is an electron (in an atomic orbit) and if
that electron carries a spin with it, then that spin would
interact with the magnetic field generated by the dipole
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at the origin (itself the result of the electron orbiting), so
that there would be two states, one in which the electron
spin was ‘up’ relative to the magnetic dipole’s field, and
the other ‘down’. This is a quasi-classical model for spin
orbit interaction, wrong in several details, but sufficient
to illustrate approximately where spin orbit interaction
comes from.

We had

µ = −neh̄

2m

for any n, and we can write this as

µ =| ~µ |⇒ ~µ ≡ ~L
e

2m
≡ γ~L

where γ is the magnetogyric ratio. We are equating the
magnetic moment and the angular momentum through a
proportionality constant. This means that for a classical
orbit with ` 6= 0 there exists an equivalent magnetic mo-
ment, located at the origin (which is where the nucleus
lies), i.e., a tiny bar magnet associated with the orbital
angular momentum.

XV. FIGURES
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4π
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at q=q’=1, r=1
r in centimeters
q in statcoulomb

FIG. 1: Unrationalized versus rationalized units

[1] In order to remember directions in the cross product, one
need only remember that

î⊗ ĵ → k̂

[2] If there is an electric field, the Lorentz force would be
~F = q~v ⊗ ~B + q ~E

[3] 10−4Tesla = 1Gauss.
[4] remember, e = 4.8 × 10−10statcoulomb, or 1.6 ×

10−19Coulomb
[5] we use τ twice here, once for the torque, and once for the

period- both usages are common
[6] Reiterating, ~B = Bk̂ (a convenience).
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FIG. 3: A Current Loop in a Magnetic Field
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FIG. 8: NMR Transition at a Chosen Field Strength
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FIG. 9: A Current Loop Creating a Magnetic Field
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FIG. 10: A Current Loop Creating a Magnetic Field is Equiv-
alent to a Bar Magnet
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