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The Hamiltonian and Schrodinger Equation for Helium’s Electrons (Hylleraas)

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
(Dated: June 15, 2006)

I. INTRODUCTION

For this two electron problem, the Schrédinger Equa-
tion has the form
h? Ze*  Ze?
—— (V34 V- 9"y =E 1.1
2m ( 1 + 2) w r d] o w ¢ ( )
where m is the mass of an electron, and the subscripts
refer to electron 1 and 2 respectively. Here

0? 0? 0?

Vi=ss+55+55
Y022 T oy2 T 922
where the subscript “1” means we are refering to electron
1 (we have a similar expression for electron 2).

It is traditional to set Z=2, since Z=1 is H~, Z=3
would be LiT, etc., i.e., to specialize to Helium itself.
Then, cross multiplying one has

2m Ze?

om Ze2
B2 T

(VB4 V)y- - wzﬁgwuz
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which is the form most people start with.

II. THE HAMILTONIAN

Assuming infinite nuclear masses, (M = Mejectron) ONE
has
12 Ze?  Ze? e?
Hyy=—— (V24+V3) - — -+ — 2.1
op 2m (Vi 2) r1 Ty T2 @1
We start with the idea of expressing the kinetic energy
part of the Hamiltonian in a form appropriate for this
problem. That operator surely has the form

52
2me

(Vi+V3)

where V has its traditional functional meaning:

with a second almost identical term for electron 2’s ki-
netic energy operator.
That means that we need to obtain

axl Y1,21,T2,Y2,22

Typeset by REVTEX

(remember, we are holding all the other {z;} constant)
for electron 1 and electron 2, with equivalent terms for y
and z (two each) as a function or r1, ro and ¥, the angle
between the location vectors of the two electrons, 1 and
T9.

III. THE COORDINATE TRANSFORMATION

. Remember that

r= /o] +yi + 27
ry =/} +y5 + 23

and

while, of course,

rig = /(@1 — 22)2 + (Y1 — y2)% + (21 — 22)?

A. Preliminary Partial Derivatives

We need, according to the chain rule, the following
terms:

0 ory 0 oy 0
— =t =y 2 1
6.’E1 6.’E1 87”1 + 8%1 [“)u (3 )

S0, focussing on the first of these, we ask, what is g—;ll‘?
We have

o, _OVai+yi+A 1 0(@ityita)  m

8951 o 8331 2 1 8371 -

™
(3.2)
Parenthetically,
87"1_1 -1 87’1 I
=——=——= 3.3
Ox1 r? Oxq r3 (3.3)

Then, we have
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For the second term in Equation 3.1 We start with the
equation for the angle between the two radii 7, and 75.
From the law of cosines, we have

ri2 = \/r? + 13 — 2r1ry cos ¥

while from vector algebra we know

71 - Ty
cost =

172

(An alternative formulation for this vector algebraic
statement is:
LTy 1T+ Yiye + 2122

cost = = =pu
T2 rir2

(3.4)

which defines u = cos?.
Since

T17T2

ap, o (z1z2+y1y2+2122)

87561 o 81’1

gives us (using Equations 3.2 and 3.3)

—1
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To  T1-T3 X1

T ry 13

ou To 1Tl T
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Ox1  rire ro T3

Clearly, the other five groups of terms are equivalent.

o _ Y2 nmpy (3.6)
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0y r172 Ty

Op _ A _mranz (3.10)
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Now, using the chain rule, we have

g 0r 0

(9151 8x1 87'1

o 9
dx1 Oy

and the two multiplicative partial derivatives are known.
Using Equation 3.5and Equation 3.4 we have

O _m 0  (x nmm) 9
Ox1 1 Or T2 31y Ay
which is

0 0 0
9 _mn +<w_m0

8$1 T1 87’1 T2 ’I"% 8y

B. Second Partial Derivatives

The second derivative would be

z1 0 Tz _ rip) 9
82 . 9 (7‘1 or1 + (rlrz rf ) Bu)
81:% 81‘1

which would be

We have achieved a mixed representation of the second
partial derivative.

Now we take the derivative with respect to xz; where
appropriate, before converting 6% to 6% and (%. We

obtain
10
83;::1821+ ( ) (3.11)
+ ((72321) a%> (3.12)
o) a@> o1

Now we expand the partial derivatives with respect to x1
to their replacements. We are going to get a devil of a
lot of terms. We obtain for the first term



which is
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which is, upon cleaning up the expressions
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and, cleaning up again, we have

82
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which is, penultimately, when all six term are added together,
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(3.29)
(3.30)
(3.31)
(3.32)
(3.33)

(3.34)

The term x122 + y1y2 + 2122 is just riraop, yields the gorgeous cancellations (see above) leading to which becomes

0? 0? 0? 0? 02 0?

P T =
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Equation —3.35 - —— + = 3.35
quation o 87"% (3:35)
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20 &
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We obtain
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(where we notice that the underbraced material (above) cancels) which (almost) finally becomes
[
. . 2 2
C. Final Cancellations Equation — 3.46 — 9 5 (3.54)
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20 0 . EXEEE.
. 29 .9 Equation — 3. _2k 9 s
Equation — 3.47 — v s + o2 (3.55) quation — 3.50 — o 2on (3.58)
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OK, we lied. There is a traditional form which we have to include:
P
ox?  Oy? 0z  0x3  Oyi 0z
2_0 2_0 2)\_0
1‘9(’"1371)+ 15’(7”2672)+ L1 o(0-m3) (3.61)
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which is, one must believe, the most compact form possible.
[
IV. THE ri, 72, 112 FORM and use the chain rule to obtain
We had the following expression for the Kinetic Energy 0 _9n 9 Iriz 9
Operator: dxy  Oxy dry | dxy I
92 92 92 92 92 92 which is, by direct differentiation
st rgtastegtagtas =
ax% ay% az% (9:L‘§ ay% az% 8 o T 8 Tr1 — T2 6
Vi+Vs= dxy 1 Or T2 Orie
r29 2\ 9
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r?2 Ory 12 Org r? 2 ou '
? _O5;
which we derived in r1,72,9 space. Now we turn to a Tl ! (4.2)
different spatial representation, r1,79,7r12. Again we seek P fll P $w11_w2 9
the Kinetic Energy Operator. i(Vf +V3) 572 _ (ﬁé‘Tl R 8r12) (4.3)
We start with oz? 0z '
12y = (11 — 22)? + (Y1 — y2)? + (21 — 22)? which is
z1 0 r1—T3 0
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which is seen to be

) )
10 i) 0 m (w19,  wi—x05;
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This is our result! When combined with the potential energy operator, one can easily form the Hamiltonian of this
system in this representation.

V. YET ANOTHER FORMULATION

In yet another coordinate scheme (double spherical polar coordinates) we have:

B2 [ 1 0r22 1 Osind
S . 10r; + — sin191 139, 8’19 —
2m \r{ Or sin” ¥4 g &/)

1 Or2 2 1 Osind
+ — 2 9ry + — sin 192 2995 8’19
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and again, in another set of mixed coordinates,

2 2 0
__n <167‘1 Ory + 1

dsin ¥y -2 2
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which can be transformed into an equation without “12” so, we have
subscripts, since
ﬂ1 . ﬂ2 = 7172 COS ’1912
r1 8in Y1 cos @173 sin ¥s oS ¢o + 71 sin ¥y sin ¢ ry sin Vg sin o + 1173 cos V1 cos Yo = r175 cos V12
which can be be solved for cos¥12. We obtain, now in a single consistent coordinate system,
n2 (1 0rig 1 " dsin V1 55- L
=— | = sinty) ——+ + —
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This last form shows explicitly not only the non-
separability of the Schrédinger Equation for Helium’s
electrons, but how horribly intertwined the coordinates
actually are due to the 15 term.

VI. DISCUSSION (I)

We have seen that the Schrodinger Equation for the
2-electron atom/ion has a 6-dimensional representation
in double-3-space {z1,y1, 21,22, Y2, 22}. We assert else-
where that this is reducible to a {ri, ra, r12} set for S
states.

The first major attack on the solution to this prob-
lem was due to Hylleraas, vide infra[l, 2], who obtained
spectacular (for the time) energies for the Helium atom’s
electrons.

Bartlett [3] vide supra showed that the series solution
to the Schrodinger equation using the Hylleraas’ expan-
sion gave rise to equations which yielded different val-
ues for the same coéfficients depending on which equa-
tions were used to determine them. Further, Withers

(

[4] showed that there is no Frobenius solution to the
Schrodinger equation (see also Coolidge and James [5]
).

The analytical situation was clarified by Fock [6] (for
the English translation, see Fock [7]) who found that in-
troducing hyperspherical coordinates required that loga-
rithmic terms exist in the expansion of the wave function.
This result overshadowed Bartlett’s similar [8] indepen-
dent discovery. A review of the current situation in this
field may be found in the work of Abbot and Maslen [9]
as well as in the recent work of Myers et al [10]. The
convergence of the Fock expansion has been investigated
by [11].

As of the date of writing, the best computation of the
energy of the ground electronic state of Helium is due to
Schwartz [12, 13].

VII. DISCUSSION (II)

If one substitutes a series (Ansatz) into the appro-
priate Schrodinger equation, one expects that one can



sequentially obtain recurrence relations between linked
coéfficients with only boundary conditions effecting the
resolution of these linked recurrence relations. Then,
using these recurrence relations to determine as many
coéfficients as possible relative to arbitrary ones, one ex-

and we will evaluate one term of this set to see what is
going on. We have

8211) B 826705(7‘14*7‘2)4*67“12

pects that this truncated and partially evaluated Ansatz, “5 = 5 (7.3)
when used in a variational calculation, will lead to the dy Oy
fastest possible convergence to the exact answers (and
coéfficients) as the truncation of the series is altered.
One expects the variationally determined coéfficients to  substituting Equation (7.1) into Equation (7.2).
monatonically approach their limiting “exact” values as
the series is extended. First, one has
An alternative approach might be to ask, what is the
potential energy function which gives rise to the simplest
correlated wave function? Consider the function §oe=otritratora 9 (70[& + 55131*21?2) e—a(ritra)+prz
B dx1 _ T1 T12 {,'7 4
1/) —e a(r1+r2)+Br12 (71) 024 oz, - )
What, we ask, is the potential energy function which has 6% 0 (—a‘;’f—; - 5%) 6’7&(““2”&7
this function as an eigenfunction? D2 = O {7.5)
We will work in the full six dimensional coordinate
system. Then, we have
0% 9% 0% 9% 0% 0%
Vev=25+-5+55+to5+75+ag (72 We obtain
6v oz Oy 022 023 Oyi 023 (7.2)
J
% _( a  axt B Bla—=o)? n o’z n B —@2)® 2aﬁx1(a¢1 = 22) | —a(ri+ra)+Briz
Ox? reoord T 3y r? 3y r1712
Py (_04 n ary B Bl —a2)*  a’ad n B (x1 —x)® 2aﬁ332(a:1—xg)> o a(rabra)+0r1z
Ox3 ro TS T2 3y r3 3y ToT12
When we add the five other sets of terms similar to these, we obtain
3a a 3a o 3 r1-7r1o T TT:
vip= (2o e e, I P g g (it TR, (7.6)
1 1 T2 r2 T2 Ti2 T1ir12 T2r12
which is
2a¢ 2a 2 ri-7T12 T3 -TT:
Vg = (2220 B ey g gap (2 2R, (7.7)
r1 T2 12 ri7r12 T2T12

What this is saying is that v is not an eigenfunction, since the term proportional to a8 shouldn’t be there if it were.

Z

1

Z—a_Z—a

1

- B -T2 T2-T12

(_ '
T2 T12 1 T2

L,y 2
T12 B 5 (a +5 ) +ab ( T1iT12 T2T12 )> v (7.8)

(
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