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Introduction to Atomic Units, Normalization and Orthogonalization (Part 2 of a
Series)

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
(Dated: June 14, 2006)

I. ABSTRACT

Normalization in physical X, Y, and Z space, where
dimensions are measured in centimeters (for instance),
leads to different values for normalization constants than
when dimensionless spaces such as that employed in
atomic units are employed.

II. INTRODUCTION

The use of atomic units comes with a non-obvious
penalty worth mentioning. Where normalizing of orbitals

involves choosing forms which force probabilities of find-
ing a particle somewhere in its domain, the values of the
normalization constants change according to the nature
of the coördinate system being employed. This means
that care must be taken to use a consistent “space” when
considering quantum chemistry manipulations.

Consider normalization of the 1s orbital,

ψ1s(x, y, z) = ce−Ar (1)

in atomic units (where A is the atomic number of the
nucleus, we often set A = 1 for illustrative purposes).
We are interested in evaluating

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz

{
ψ2

1s

}
=

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz

{
c2e−2Ar

}
(2)

Converting back to “real” units, we have

Ψ1s(X,Y, Z) = Ce−
Ame2

h̄2 R → Ce−
A
a0

R

where the mass, “m”, is in grams, the electron’s charge
“e” is in stat-coulomb, and h̄ is in erg-sec, “R” is in cm
and a0 is the Bohr radius whose value is h̄2

me2 and which
has units

erg2sec2

gram(dyne1/2cm)2

which works out to be centimeters. The normalization
integral for this wavefunction is∫ ∞

−∞
dX

∫ ∞

−∞
dY

∫ ∞

−∞
dZΨ2

1s → 1

which is∫ ∞

−∞
dX

∫ ∞

−∞
dY

∫ ∞

−∞
dZC2e−2 Ame2

h̄2 R → 1

where we are using the “real” form of wavefunctions (and
therefore avoiding complex conjugates). This value is
chosen to force the probability of finding the electron
somewhere we it is known that the electron inhabits this
particular orbital, should be certainty. We know that we
will choose the normalization constant, C, so that this
integral has the value 1.

III. UNITS

What are the units of C?
The integrand

C2e−2 Ame2

h̄2 RdXdY dZ

is supposed to be the probability of finding the electron
within dX of X, i.e., from X to X + dX, within dY
of Y and within dZ of Z. Probabilities are dimension-
less, so C2 must have the units 1

cm3 to offset the units of
dXdYdZ.

IV. DOING THE INTEGRAL

Oddly enough, in doing the integral, we usually convert
back to a form which looks suprisingly enough like the
original dimensionless form we started with (but it isn’t).
We write ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
C2e−2 Zme2

h̄2 RdXdY dZ

as

C2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−γRdXdY dZ
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where γ = 2Zme2

h̄2 = 2 A
a0

. Now, we can convert to spher-
ical polar coördinates, and obtain

C2

∫ 2π

0

dΦ
∫ π

0

sinΘdΘ
∫ ∞

0

dRe−γRR2

which is

4πC2

∫ ∞

0

dRR2e−γR → 1 (3)

A. Integral Review, trickery

We know that∫
dR

(
e−γR → e−γR

−γ

)
so the definite integral∫ ∞

0

dR
(
e−γR

)
→ e−γR

−γ

∣∣∣∣∞
0

→ 1
γ

Further, we can take the derivative of this last equation
with respect to γ i.e.,

d
{∫∞

0
dRe−γR = 1

γ

}
dγ

which is ∫ ∞

0

dR
(
(−R)e−γR

)
= − 1

γ2

and we can do this again, i.e.,

d
{∫∞

0
dR

(
(−R)e−γR

)
= − 1

γ2

}
dγ

which yields ∫ ∞

0

dR
(
(R2)e−γR

)
=

2
γ3

which is almost Equation 3.

B. Alternative Integration using Integration by
Parts

Alternatively, we could write∫ ∞

0

R2e−γRdR =
∫
udv

where u = R2 and dv = e−γRdR, employing the standard

d(uv)
dR

= v
du

dR
+ u

dv

dR
and multiplying by dR and integrating we would have∫

d(uv)
dR

dR =
∫
d(uv) =

∫
vdu+

∫
udv

We then obtain∫ ∞

0

R2e−γRdR = R2 e
−γR

−γ

∣∣∣∣∞
0

−
∫ ∞

0

2R
e−γR

−γ
dR

Since the first term on the r.h.s vanishes, we have∫ ∞

0

R2e−γRdR =
∫ ∞

0

2R
e−γR

γ
dR

which can be integrated again by parts, this time defining
u=R, to obtain

∫ ∞

0

R2e−γRdR =
∫ ∞

0

2R
e−γR

γ
dR =

2
γ

(
R
e−γR

γ

∣∣∣∣∞
0

+
∫ ∞

0

e−γRdR

)

and again, the first term vanishes, yielding

∫ ∞

0

R2e−γRdR =
2
γ2

(
e−γR

−γ

∣∣∣∣∞
0

)
=

2
γ3

again.

V. CONTINUING

Equation 3 now becomes

4πC2 2
γ3

= 4πC2 2(
2A
a0

)3 → 1

so that, solving for C2 we have

C2 =

(
2A
a0

)3

8π
(4)
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so that

C =

√√√√(
2A
a0

)3

8π
=

√√√√(
A
a0

)3

π

VI. NORMALIZATION IN ATOMIC UNITS

We now return to the original question, which was,
what is the normalization constant (c) when using atomic
units? The normalization integral was∫ ∞

−∞
dX

∫ ∞

−∞
dY

∫ ∞

−∞
dZC2e−2 Ame2

h̄2 R = 1 (5)

and we now define the coördinate transformation

x =
Ame2

h̄2 X =
A

a0
X

with similar equations for Y and Z (r = Ame2

h̄2 R = A
a0
R).

Then

dx =
Ame2

h̄2 dX =
A

a0
dX

and therfore

dX =
dx

Ame2

h̄2

=
dX
A
a0

so, dXdYdZ becomes

dXdY dZ =
(

h̄2

Ame2

)3

dxdydz =
(a0

A

)3

dXdY dZ

making the integral (Equation 5)

(
h̄2

Ame2

)3 ∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dzC2e−2r = 1

Then we have employing Equation 4’s definition of C2:

(a0

A

)3
(
A

a0

)3 1
π

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dze−2r = 1

or, cancelling,∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dze−2r = π

which would be, in spherical polar coördinates:

4π
∫ ∞

0

R2dRe−2r = π

(and, where γ = 2 now)

4
2
23

= 1

a tautology.

VII. RETURNING TO THE BEGINNING

Finally, we have from Equation 2

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz

{
ψ2

1s

}
=

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz

{
c2e−2Ar

}
(6)

which would be

4πc2
∫ ∞

0

r2dre−2Ar

which is

4πc2
2

(2A)3

and if we force this to be 1, we have

4πc2
1

4A3
= 1

which says that

c =

√
A3

π
which shows that the normalization constant’s form de-
pends on the initial choice of coördinate system.
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