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FIELD NOTE

Methods to Convert Local Sampling Coordinates
into Geographic Information System/Global
Positioning Systems (GIS/GPS)–Compatible
Coordinate Systems

Mark Rudnicki and Thomas H. Meyer

Laying out a sampling transect in the field is a common task when researching natural systems and resources. With widespread availability of global navigation
satellite systems (GNSS), such as the US global positioning system (GPS), it is becoming more common to resurvey legacy transects to establish them in globally
referenced coordinate systems such as geodetic latitude/longitude or planimetric systems such as the Universal Transverse Mercator (UTM) or the State Plane
Coordinate System (SPCS). Transforming local coordinates into a globally referenced coordinate system allows (1) disparate legacy surveys to be combined into
a common geographic information system (GIS) database, (2) new GPS measurements to be incorporated into that same database, and (3) GPS-based navigation
to be used for plot establishment and resampling. This article presents the mathematics necessary to determine the globally referenced planimetric coordinates
of established linear, rectangular, or nominally rectangular transects (such as a rhombus) using formulas that are easily implemented on a spreadsheet. In
addition, methods are given to determine the planimetric coordinates of new transects.

Keywords: legacy, transect, sampling, planimetric, coordinate systems

Before the recent popularization of geographic information
systems (GIS) and the advent of global navigation satellite
systems (GNSS), there was little benefit for fieldworkers to

establish plots in a globally referenced coordinate system such as
latitude and longitude. In natural resources work, e.g., latitude and
longitude (called geographic coordinates) are used mainly for navi-
gational purposes and typically are determined by scaling from the
graticule shown on a topographic map. Once an area of interest was
reached, a local planimetric coordinate system was established for
transect and quadrat plot sampling (Scheaffer et al. 1990, Avery and
Burkhart 2002). Hence, most legacy sites used local surveys because
they used arbitrary coordinate pairs for the origin and may not have
been oriented with any concern for north.

In general, local surveys are incommensurate and therefore can
not be meaningfully combined with each other. Transformation of
local surveys into a global coordinate system allows valuable histor-
ical data to be combined in a GIS with publicly available data sets.
Furthermore, use of a global coordinate system allows the use of a
handheld global positioning system (GPS) receiver that can aid nav-
igation, plot establishment, and plot resampling. Plots established
with a GPS also can be meaningfully combined in a GIS without any
modification. The implementation of three GNSSs, namely, the US
GPS, the Russian Global’naya Navigatsionnaya Sputnikovaya Sis-
tema (GLONASS), and the European Union Galileo system, pro-
vide enough satellite coverage that satellite-based surveying in for-
ests will likely become far more accurate and common in the future
(Meyer et al. 2002).

Coordinate Systems
A globally referenced geodetic coordinate system is a coordinate

system that is capable of assigning consistent coordinates to any-
where on, above, or within the Earth. Consequently, globally refer-
enced geodetic coordinate systems are spherical in nature (as op-
posed to planimetric) and intrinsically three dimensional (Meyer et
al. 2005, Moritz 2000). By far, the most common geodetic system is
latitude and longitude (Meyer 2002). However, few fieldworkers
choose to work in spherical coordinates because it is not practicable
to fix closely spaced latitudinal and longitudinal coordinates and it is
not necessary to consider the curvature of the Earth on typically
small-scale plot transects (less than 10 km). Instead, plots typically
reside in local planimetric coordinates, which assume the Earth is
flat. Although the exact definitions of geodetic latitude and longi-
tude are somewhat subtle (Meyer 2002), for these purposes, the
commonplace notions suffice, namely,

Latitude is the angle in the plane of the meridian from the equator to
the point of interest, reckoned positive to the north (Figure 1a).

Longitude is the angle in the equatorial plane from the prime merid-
ian to the meridian holding the point of interest, reckoned pos-
itive toward the east (Figure 1a).

Planimetric coordinates can be derived rigorously from geodetic
latitude and longitude via cartographic projections, such as the
Lambert Conformal Conic or the Transverse Mercator. These
transformations are invertible, meaning that projected eastings and
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northings unambiguously define a single latitude/longitude pair to
which they correspond and vice versa. Thus, there is no important
reduction in geospatial rigor when using a globally referenced plani-
metric coordinate system. The Universal Transverse Mercator
(UTM) is an example of a formal, globally referenced planimetric
coordinate system.

Geodetic Datums
A geodetic datum (or, simply, “datum”) is a mechanism by which

geodetic coordinates (latitude and longitude) are assigned to loca-
tions on the Earth. Datums are constructed for particular countries
or regions. Therefore, to maximize precision, a fieldworker must
select the datum appropriate to the area of interest. For example, the
North American Datum of 1983 (NAD 83) (Schwarz 1989) is
preferred for plot establishment in North America because NAD 83
is the most modern datum for that region (except Mexico) and it is
rigorously compatible with the International Terrestrial Reference
Frame of 2000 and the World Geodetic System of 1984 (WGS 84),
the datum for GPS. If working in Australia, one would use the
Geocentric Datum of Australia of 1994 (GDA 94) or the South
American Geocentric Reference System (SIRGAS) for determining
coordinates in South America. For detailed information on datums
we refer the reader to Elithorp and Findorff (2003). If you are
unsure of what datum is best for your location, you should consult a
geodesist or a land surveyor or contact the National Geodetic
Survey.

Projected Planimetric Coordinates
We believe that projected planimetric coordinate systems, such

as UTM or State Plane Coordinate System (SPCS), are simpler and
more popular than latitude and longitude and assume most field-
workers would prefer to work in this type of system. For transects so
large that the curvature of the Earth can not be considered negligible
(approximately more than 10 km in length; Bomford [1980]), this
material can be developed in latitude and longitude and would
correctly handle the curvature of the Earth, but this is outside the
scope of this study.

GPS naturally produces coordinates in globally referenced coor-
dinate systems, such as latitude and longitude or derived planimetric
systems, such as the UTM or the SPCS. This article shows how to

transform local coordinates into a GPS-compatible coordinate
system.

UTM
The UTM coordinate system is very popular for at least two

reasons. First, as the name suggests, it is applicable to any location on
Earth between 80° south latitude and 84° north latitude, which is
not true for other coordinate systems. Second, although UTM has
global applicability apart from the poles, it maintains distance error
distortions to be, at worst, 1 part in 1,000 by subdividing the Earth
into 60 zones starting at the International Date Line, each being 6°
of longitude in width. Perhaps the main disadvantage of the UTM
coordinate system is also one of its strengths, namely, that it imposes
a linear scale distortion of 1:1,000 at the edges and center of the
zones. Such distortion is unacceptable for survey-quality mapping
but is usually suitable for resource inventories. See Snyder (1987) for
full details of the UTM system and common cartographic projec-
tions. We will provide concrete examples in the UTM system but
everything in this study is equally applicable to any other globally
referenced planimetric coordinate system.

SPCS
If your survey requires more precision, the SPCS (Stem 1995) is

an alternative to the UTM system and is more precise and favored by
land surveyors (linear scale distortion of less than 1 part in 10,000).
Although the SPCS is only defined within the United States, most
countries have planimetric coordinate systems that are similar in
concept. The SPCS subdivides states along political boundaries into
inter- and intrastate mapping zones. Zones in which their long
dimension is north–south are projected using a Transverse Mercator
projection and those with a long east–west dimension are projected
using a Lambert Conformal Conic projection; the “panhandle” of
Alaska is projected using an Oblique Mercator projection. Although
SPCS achieves greater precision by using small zones, its disadvan-
tage is that its smaller zones have local coordinates that are not
commensurate across zone boundaries; therefore, SPCS surveys
must be fairly small in extent and typically within a single county.

Geodetic Directions
The mathematics that follows depends in part on azimuth. Azi-

muth is an angle that describes the direction from one place to

Figure 1. (a) Latitude and longitude are the indicated angles. The point of interest is the solid circle. (b) Azimuth is the angle from the meridian (north)
clockwise to the point of interest.
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another. Geodetic azimuth, as opposed to magnetic azimuth, uses a
meridian (typically north) as its zero reference and is reckoned pos-
itive clockwise (Figure 1b). Generally, it is not possible to directly
determine geodetic azimuth in the field because magnetic compasses
indicate magnetic north, not geodetic north. This can be overcome
either by establishing rigorous survey control with an origin monu-
ment and an azimuth mark or, more commonly and less accurately,
adjusting magnetic north by the local magnetic declination.

Linear Transects
The mathematics in this article will be presented using vector

algebra. We denote points and vectors in boldface, e.g., v. As coor-
dinate pairs, points and vectors are given as easting and northing
values, in that order. Scalar quantities will be given in italics, e.g., i.

Suppose it is desired to stake out a transect along a straight line. The
length of the transect L, its origin o, its azimuth a, and the number of
stations (sample plot locations) along the transect (not including the
origin) n are given. The solution depends on vector algebra in the
following way. The addition of a vector and a point is another point
offset from the first in the direction and by a distance equal to those of
the vector. Using this fundamental relationship, the location of stations
will be given by adding an appropriate vector to the origin. The vector
is determined from the transect length and azimuth:

v � �L sin a, L cos a� (1)

Then, the ith station si is given by

si � o � �i/n�v. (2)

EXAMPLE 1. The origin of a transect is to be located in UTM zone 17
at o � (365456.10 E, 44343760567.50 N). The transect is to be 500 m
in length, have five stations not including the origin, and oriented at an
azimuth of 291°. The vector v is given from Equation 1 as

v � �L sin a, L cos a�

� �500 sin 291°, 500 cos 291°)

� ��466.79, 179.184�.

The 0th station is given by i � 0 and is the origin of the transect
itself. The first station is given from Equation 2 as

s1 � o � 1⁄5 v

� �365236.1, 4434167.5� � 0.2��466.79, 179.184�

� �365236.1 � 93.358, 4434167.5 � 35.837�

� �365142.74, 4434203.34�.

The coordinates for the origin and all five stations are given in Table
1. As a check, the Pythagorean theorem gives the length of the

transect as

L � ��e0 � e5�
2 � �n0 � n5�

2

� ��365236.10 � 364769.31�2 � �4434167.50 � 4434346.68�2

� ��466.792 � 179.1842

� 500.

Coordinates of a Legacy Transect
Suppose it is desired to determine the UTM coordinates of an

existing legacy transect. We assume that the transect’s origin and the
end point have known planimetric coordinates; perhaps they were
determined with a high-accuracy GPS receiver. If the intermediate
stations are equispaced or believed to be so, then, Equation 2 is
suitable as given and the vector from the origin to the end point can
be determined with Equation 1. Otherwise, the horizontal separa-
tions between the stations can be measured too, and Eqution 2 can
be modified as

si � o �
di

L
v, (2a)

where di � �j�0
i �j, 0 � i � n and the �j are the horizontal distances

(separations) between the sample locations and �0 � 0. L � �j�0
n�1 �j

is the total horizontal length of the transect, which also can be
deduced from the Pythagorean theorem,

L � ��en � eo�
2 � �nn � no�

2, (3)

and the azimuth is given from

a � arctan�en � eo/nn � no�. (4)

The formula for the azimuth requires additional explanation. An
azimuth can, of course, vary from 0° (north) up to just less than
360°. Therefore, it is critical that the arctangent function be able to
discriminate all four quadrants. This requires that the function take
two arguments, not the single ratio of the eastings and northings as
shown. For example, some spreadsheets support the ATAN2 func-
tion, which will function as necessary.
EXAMPLE 2. Given a linear transect origin at UTM zone 14
(101412.43 E, 55213760509.21 N) and a transect end point at
(101415.98 E, 55203760596.19 N), find the length of the transect
and its azimuth:

L � ��en � eo�
2 � �nn � no�

2

� ��101615.98 � 101332.43�2 � �5520696.19 � 5521509.21�2

� �283.552�(�813.02)2

� 861.05,

Table 1. Easting and northing UTM coordinates for a transect starting at (465236.10 E, 4434167.50 N) length 500 m and oriented 291�
north.

i 0 1 2 3 4 5

Easting 365236.10 365142.74 365049.38 364956.03 364862.67 364769.31
Northing 4434167.50 4434203.34 4434239.17 4434275.01 4434310.85 4434346.68
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a � arctan�101615.98 � 101332.43/5520696.19 � 5521509.21�

� arctan�283.55/�813.02�

� 160.77°.

COMMENT. Equation 4 can be used to establish the azimuth be-
tween any two points. Therefore, it could be used to determine the
azimuth with which to stake out a new transect by locating the
transect’s origin by navigating to its position with a GPS, and then
creating another monument, called an azimuth mark, anywhere
visible from the origin and measuring its position with the GPS.
Then, use Equation 4 to determine the actual azimuth from the
origin to the azimuth mark to calibrate a magnetic compass to
geodetic north; or use it as a back site if laying out the transect with
a total station.
EXAMPLE 2A. Suppose it is desired to assign UTM coordinates to
unequally spaced stations along an existing transect. The origin
coordinates were determined to be UTM zone 14 (101412.43 E,
55213760509.21 N) and a corrected compass reading gives the
transect azimuth as 15° (N 15 E). A laser rangefinder or a tape and
inclinometer was used to determine the horizontal distances sepa-
rating five sample locations (n � 5), namely, 50, 30, 40, and 60 m.
Thus, �0 � 0, �1 � 50, �2 � 30, �3 � 40, and �4 � 60.

The horizontal length of the transect line is the sum of the sep-
aration distances, 180 m. From Equation 1, v is computed to be v �
(L sin �, L cos �) � 180 sin 15, 180 cos 15) � (46.587, 173.867).
Then,

d0 � �
j�0

i

� j � �
j�0

0

� j � �0 � 0,

d1 � �
j�0

1

� j � �0 � �1 � 0 � 50 � 50,

and so on up to

d4 � �
j�0

4

� j � �0 � �1 � �2 � �3 � �4

� 0 � 50 � 30 � 40 � 60 � 180.

So, from Equation 2a, we compute the coordinates of two sample
locations, s0 and s2, to illustrate the use of the equation.

s0 � o �
d0

L
v � o �

0

L
v � o � �101332.43, 5521509.21�

and

s2 � o �
d2

L
v

� o � �0 � 50 � 30

180 �v

� �101332.43, 5521509.21� � � 80

180� �46.59, 173.87�

� �101332.43, 5521509.21� � �46.59, 173.87�

� �101353.14, 5521586.48�.

Rectangular Transects
Determining the geodetic coordinates of the subplots within

nominally rectangular transects can be difficult and tedious. The
plot itself often is not actually rectangular, either by design or be-
cause of errors in its creation. This gives rise to three different inter-
pretations concerning its internal subplots (Figure 2):

1. Subplots are to evenly subdivide the actual quadrilateral shape
as the plot.

2. Subplots are to lay parallel to the local x and y axis defined by
the two sides of the plot intersecting at the plot’s origin point.
This implies subplots are rhomboids and will not, in general,
exactly match the farther borders of the plot.

3. Subplots are to be actually rectangular and lay parallel to one
side of the plot.

Any one of these arrangements is reasonable; so, we present formulas
for each case. In all cases we assume the plot is to have been laid out
as a grid of (n � m) rows and columns of subplots.

Quadrilateral Subplots
The problem is, given the geodetic planimetric coordinates of the

four points defining a four-sided transect, provide the coordinates of
the (n � m) internal subplots such that each side of the transect is
subdivided into equal-sized partitions (see Figure 4). We use a math-
ematical surface, the Coons patch, to solve this problem (Coons
1967, Faux and Pratt 1979 p. 198–203). A Coons patch is a ruled
surface, meaning that it is a surface generated from a family of
straight lines. Although Coons patches need not have straight-line
boundaries, we will present them in that form because it suits our
purpose.

The Coons patch surface is parameterized by two logical vari-
ables, u and v. These variables essentially define the x and y directions
as defined by the edges of the plot; note that they have no a priori
relationship to east or north. Both u and v can have values in the

Figure 2. Three ways to subdivide a legacy quadrilateral transect.
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range [0, 1]. We denote the Coons patch as s(u, v), meaning that the
function s evaluated at parameter values u,v yields a point within the
patch. The four corner points of the plot are denoted p00, p01, p10,
and p11 (Figure 3). With this notion, the formula for a Coons patch
is

s�u, v� � �1 � u��1 � v�p00 � u�1 � v�p10

� �1 � u�vp01 � uvp11 (5)

The subscripts of the corner points indicate the u, v pair that corre-
spond to that point, i.e., s(0, 0) � p00, s(0, 1) � p01, s(1, 0) � p10,
and s(1, 1) � p11. For example, let u � 1 and v � 0. Then

s�1, 0� � �0��1�p00 � 1�1�p10 � �0�0p01 � 1 � 0p11

� p10

EXAMPLE 3. Given p00 � (100, 500), p01 � (80, 620), p10 � (200,
510), and p11 � (210, 630), what point is given by u � 0.3 and v �
0.8? Note that no two sides of this figure are parallel or have the same
length.

s�0.3, 0.8� � �1 � 0.3��1 � 0.8�p00 � 0.3�1 � 0.8�p10

� �1 � 0.3��p01 � 0.3 � 0.8p11

� �0.7��0.2�p00 � 0.3�0.2�p10 � �0.7�0.8p01

� 0.3 � 0.8p11

� 0.14p00 � 0.06p10 � 0.56p01 � 0.24p11

� 0.14�100, 500� � 0.06�80, 620�

� 0.56�200, 510� � 24�210, 630�

� �0.14 � 100 � 0.06 � 80 � 0.56 � 200

� 0.24 � 210, 0.14 � 500 � 0.06 � 620

� 0.56 � 510 � 0.24 � 630)

� �121.2, 559.0�.

Figure 4 shows the transect and all the internal points for u and v
varying from 0 to 1 in steps of 0.1 increments. If there are to be n
subplots in the u direction and m subplots in the v direction, let u
vary in steps of 1/n and let v vary in steps of 1/m.
COMMENT. Equation 5 can be generalized to three dimensions by
simply letting the corner points have three coordinates (Figure 5).
The rest of the computations follow directly. Figure 5 shows the
result if p00 � (100, 500, 0), p01 � (80, 620, 10), p10 � (200, 510,
�20), and p11 � (210, 630, 20), plotted against u and v. Note that
the surface is twisted but everywhere is composed of straight lines
running in the u and v directions.

Rhomboid Subplots
Suppose the subplots are to lay parallel to the “bottom” and “left”

axis of the plot. Then, the subplots are rhomboids (Figure 6). We
generalize Equation 2 to be

si, j � o �
i

n
vu �

j

m
vv, (6)

where si,j is the ith corner in the u direction and the jth corner in the
v direction, o is the origin point, n is the number of subplots in the
u direction, m is the number of subplots in the v direction, and vu

Figure 3. The four corner points of the transect. The origin corresponds to
u � 0, v � 0. The bottom right corner corresponds to u � 1, v � 0. The top
left corner corresponds to u � 0, v � 1. The top right corner corresponds to
u � 1, v � 1.

Figure 4. Transect subdivision points given using a Coons patch. Note that
all boundaries have been subdivided equally and that the subplots change
shape smoothly to interpolate the transect.

Figure 5. The same surface as shown in Figure 4 but in three dimensions.
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and vv are vectors aligned with the “bottom” and “left” axis of the
plot; vu � p10 � p00 and vv � p01 � p00.
EXAMPLE 4. Given p00 � (100, 500), p01 � (80, 620), p10 � (200,
510), and p11 � (210, 630) and n � 5 and m � 10, what point is
given by i � 3 and j � 8?

First,

vu � p10 � p00 � �200, 510� � �100, 500� � �100, 10�.

Similarly, vv � (�20, 120). Then,

si, j � o �
i

n
vu �

j

m
vv

� �100, 500� � 3/5�100, 10� � 8/10��20, 120�

� �144, 602�.

Figure 6 shows all the corners. Notice that the “top” and “right”
rows do not match the plot’s boundary but that all the subplots
honor the axes defined by the “bottom” and “left” plot boundaries.

Rectangular Subplots
To create actually rectangular subplots, vv needs to be perpen-

dicular to vu. Let vu � p10 � p00 as before. The condition that vv is
perpendicular to vu is equivalent to insisting that the angle between
these vectors be 90° and bu � vv � cos 	 � 	vu	 � 	vv	 by the definition
of the inner product of two vectors, where 	�	 denotes a magnitude
operator: 	v	 � 
v1

2 � v2
2, where v1 denotes the first coordinate of

v, and so on. Furthermore, the inner product of two perpendicular
vectors equals 0. So, given vu, find the vector vv such that vu,1 � vv,1

� vu,2 � vv,2 � 0. This is done easily by choosing vv to be either
(vu,2, �vu,1) or (�vu,2, vu,1). For example, if vu � (100, 10), then vv

� (�10, 100) is perpendicular to vu: 100 � 10 � �10 � 100 � 0,
as required. Then, to lay out rectangular subplots, use Equation 6 as
before, having chosen vv as described.

Laying Out New Plots
The aforementioned three methods are applicable to this prob-

lem by simply using Equations 1 and 2 to establish the coordinates
of the plot corners and proceeding as described in the previous
section.

Discussion and Conclusions
We have presented techniques with examples to determine the

globally referenced planimetric coordinates of established linear,
rectangular, or nominally rectangular transects (such as a rhombus).
These broadly applicable techniques can enable the one to convert
local coordinates from legacy surveys into a globally referenced co-
ordinate system such as UTM. Techniques presented are easily im-
plemented on a spreadsheet. We also include how to determine the
planimetric coordinates of new transects.

Because many relationships of interest in natural resources oper-
ate on multiple spatial and temporal scales, the ability to establish
historical information in a globally referenced system (UTM) allows
a researcher or manager to take advantage of the many recent break-
throughs in spatial processing and analysis. Many legacy plots have
been maintained for decades, accumulating valuable data that now
can be combined with remotely sensed information for validation or
understanding large-scale processes over time. With the survey grade
accuracy possible with GPS, survey control can be easily brought to
remote locations that are unapproachable with traditional surveying
methods. In addition, establishing new or legacy plot coordinates
with the UTM system allows an efficient resampling or expansion of
such surveys.
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Figure 6. Rhomboid subplots. The subplot is constrained to fall parallel to
the “bottom” and “left” axes of the plot. Consequently, some points at the
edges fall outside the plot.
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