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Atomic Units, Why We Need Them and How they Work

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
(Dated: June 14, 2006)

I. INTRODUCTION

We assume that the reader has gone through an ini-
tial discussion of the quantum mechanics of atoms and
molecules, and seeks an alternative treatment which
looks at the same material backwards, i.e., motivated
by the question of why we have done what we’ve done?
The raison d’être for changing units to “atomic units” is
usually treated laconically as a side issue. Therefore, we
here explore “atomic units” in a manner different from
standard textbook treatments.

II. EIGENFUNCTIONALITY

The world of atomic physics is “so small” that the unit
systems we use in the macroscopic world you and I in-
habit (by default) are inappropriate. To create a system
of units which makes sense, one starts with the H-atom’s
associated Schrödinger Equation:

− h̄2

2m
∇2ψ − Ae2

R
ψ = Eψ (1)

where we have used me for the mass of an electron, called
the infinite nuclear mass approximation. If one carried
out the more exact two body problem of the nucleus and
extra nuclear electron moving about the common center
of gravity, this would have become µ i.e.,

1
mp

+
1
me

=
1
µ

and me → µ, the reduced mass of the entire H-atom.
“A” is the atomic number of the nucleus (A=1 means
H atom, A=2 means He+, A=3 means Li2+, where Ae
is the charge on the nucleus and e is the charge on the
electron). This is

We make only one notational change, defining the
Cartesian and spherical polar forms of the Laplacian:

∇2
(X,Y,Z) =

∂2

∂X2
+

∂2

∂Y 2
+

∂2

∂Z2
= ∇2

(R,θ,φ) =
1
R2

∂
(
R2 ∂

∂R

)
∂R

+
1

R2 sin2 ϑ

(
sinϑ

∂
(
sinϑ ∂

∂ϑ

)
∂ϑ

+
∂2

∂φ2

)
(2)

i.e., we use capital letters to indicate coördinates in cen-
timeters (meters might be preferred, but since both are
absurd from an atomic/molecular point of view, let’s not
go crazy), where R =

√
X2 + Y 2 + Z2. One has, for the

ground (1s) state,

ψ1s(R[cm], ϑ[rad], φ[rad]) = e−αR[cm]

where α is a (to be determined) constant whose units
must be cm−1 (This one time the units have been indi-
cated in square brackets.). Substituting this 1s solution
into the Schrödinger Equation one has

− h̄2

2m
∇2

(R,θ,φ)e
−αR − Ae2

R
e−αR = Ee−αR

which is

− h̄2

2m
1
R2

∂
(
R2 ∂e−αR

∂R

)
∂R

− Ae2

R
e−αR = Ee−αR

where, of course, we only needed the radial part of the
Laplacian. Carrying out the first (inner) partial deriva-
tive, we obtain

− h̄2

2m
1
R2

∂
(
R2(−αe−αR)

)
∂R

− Ae2

R
e−αR = Ee−αR

and, after carrying out the second (outer) partial deriva-
tive, we have

− h̄2

2m
1
R2

(α2R2 − 2αR)e−αR − Ae2

R
e−αR = Ee−αR
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which simplifies to

− h̄2

2m
1
R2

(α2R2 − 2αR)− Ae2

R
= E

which becomes upon re-grouping

− h̄2

2m
α2 +

(
αh̄2

m
−Ae2

)
1
R

= E

Re-writing this in a suggestive form:

g(R) = − h̄2

2m
α2 +

(
αh̄2

m
−Ae2

)
1
R
− E = 0 (3)

we see that if the left hand side, called temporarily g(R),
is to equal zero for arbitrary values of α, then we have
an equation here for a special radius, R∗, for which
g(R∗) = 0. But we are charged with finding solutions
to the original Schrödinger Equation for all R, not just
some special one. Therefore we are forced to choose a
value of α which makes it possible for the equation g(R)
to equal zero for all values of R.

If the coëfficient of 1/R were to vanish then E (a con-
stant) would be identified, i.e., if(

αh̄2

m
−Ae2

)
= 0 (4)

then Equation 3 would become

g(R) = − h̄2

2m
α2 + (0)

1
R
− E = 0 (5)

This is certainly possible (i.e., not a function of R any-
more)! To achieve this, we need to choose α:

α =
mAe2

h̄2

and, squaring,

α2 =
m2A2e4

h̄4

so that, left multiplying both sides by − h̄2

2m , we then
obtain

− h̄2

2m
α2 = − h̄2

2m
m2A2e4

h̄4 = E

arriving finally at

E = −A
2e4m

2h̄2 (6)

which is a well known result!
III. WHAT WOULD CHANGE IF WE CHANGE

THE SCALE OF X, Y AND Z

Knowing α’s value, we return to the Schrödinger Equa-
tion:

− h̄2

2m
∇2

(X,Y,Z)ψ(X,Y, Z)−Ae
2

R
ψ(X,Y, Z) = Eψ(X,Y, Z)

or

− h̄2

2m
∇2

(R,θ,φ)ψ(R, θ, φ)− Ae2

R
ψ(R, θ, φ) = Eψ(R, θ, φ)

(again, we use our non-standard notation to remind the
reader that the Laplacian is still in terms of the original
(cm) coördinate scheme) where we know that h̄ is in erg-
seconds, me (the mass of the electron) is in grams, e, the
charge on the electron (4.8x10−10) is in statcoulomb, and
E, the energy, is in ergs. This is the cgs system. Let us
define a dimensionless radius, r, so that

r = βR ; R = r/β

which means

X = x/β ; Y = y/β ; Z = z/β

where β is a constant (to be determined) whose units are
cm−1, and x, y, and z are to be forced dimensionless.
Then

∂

∂R
=

∂r

∂R

∂

∂r
= β

∂

∂r

using the chain rule. Then, we have

1
R2

(
∂R2

(
∂e−αR

∂R

))
∂R

=
1

(r/β)2
β
∂
(
(r/β)2β ∂e

−αr/β

∂r

)
∂r

so, we obtain

− h̄2

2m
β(
r
β

)2

∂
(
(r/β)2 β ∂e

−αr/β

∂r

)
∂r

−Ae
2

r/β
e−αr/β = Ee−αr/β

or, taking the second partial derivative

− h̄2

2m
βα

r2
∂
(
r2e−αr/β

)
∂r

− Ae2

r/β
e−αr/β = Ee−αr/β

so

− h̄2

2m
βα

r2

(
2re−αr/β − r2α

β
e−αr/β

)
−Ae

2

r/β
e−αr/β = Ee−αr/β

+
h̄2βα

mr
− h̄2α2

2m
− Ae2

r/β
= E (7)

and with A = 1,
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(
h̄2βα

m
− e2β

)
1
r
− h̄2α2

2m
− E = 0 = β

(
h̄2α

m
− e2

)
1
r
− h̄2α2

2m
− E

(which shows that the argument concerning α is inde-
pendent of the value of β, since the coefficient of 1

r is the
same as in Equation 4) i.e., β factors out.

We chose to set A=1 momentarily, so that later we
can handle the entire isoelectronic series of one electron
atoms and ions in one fell swoop. The fact that β ulti-
mately factors out of the first term (above) h̄2α

m − e2 → 0
indicates that the argument about choosing β will not
influence the form of the Schrödinger Equation, i.e., we
are free to choose it as we wish, and we choose to make
it so that the exponential has no constants in it, i.e., we
choose α

β = 1 as an appropriate form. This makes the
exponential (since R = r/β)

e−αR → e−αr/β → e−r = e−
√
x2+y2+z2

(said another way (substituting for α), e−
me2

h̄2 R →
e−

me2

h̄2 r/β) where, or course, r =
√
x2 + y2 + z2, and x,

y, z and r all are now dimensionless.ψ(x, y, z) is a clean
function if ever there was one.

With A = 1 we have

β = α =
me2

h̄2 (8)

i.e.,

β =
gram(dyne1/2cm)2

(erg − sec)2
=
gram− dyne− cm2

erg2 − sec2
=
gram− cm
erg − sec2

= cm−1

(which has the expected units reciprocal centimeters in
cgs units). Further

1
β

=
( 6.627×10−27

(2∗3.14159) )2

9.1× 10−28(4.8× 10−10)2
∼ 5.3× 10−9cm

This happens to be approximately 0.5Å, the Bohr radius.
For the isoelectronic one electron series the 1s orbital

would now be e−Ar.

IV. FORMING THE DIMENSIONLESS
SCHRÖDINGER EQUATION

Again, returning to the Schrödinger Equation, we had

− h̄2

2m
∇2

(X,Y,Z)ψ(X,Y, Z)−Ae
2

R
ψ(X,Y, Z) = Eψ(X,Y, Z)

We re-write it as

− h̄2

2m

{
∂2

∂X2
+

∂2

∂Y 2
+

∂2

∂Z2

}
ψ(X,Y, Z)− Ae2

R
ψ(X,Y, Z) = Eψ(X,Y, Z)

and since

R = βr ; r = R/β

we can write it in components using

X = x/β ; Y = y/β ; Z = z/β

where x, y,&z are the new coordinates. the squared sum
of which lead to r2.

From the chain rule, we obtain
∂

∂X
=

∂x

∂X

∂

∂x
= β

∂

∂x

∂2

∂X2
= β2 ∂

2

∂x2

so (with similar terms for y and z) we transform the
Laplacian from the set X,Y,Z to x,y,z.
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−β
2h̄2

2m
∇2

(x,y,z)ψ(x, y, z)− Ae2β√
x2 + y2 + z2

ψ(x, y, z) = Eψ(x, y, z)

which becomes (using Equation 8)

−1
2
∇2

(r,θ,φ)ψ −
mAe2

h̄2βr
ψ =

mE

β2h̄2ψ

so, with A=1, choosing,

me2

h̄2β
= 1

one recovers Equation 8:

β =
me2

h̄2

where we pull out the A so that later we can treat more
than just H.

Continuing, we have

−1
2
∇2

(r,θ,φ)ψ −
1
r
ψ =

mE

h̄2
(
me2

h̄2

)2ψ =
Eh̄2

me4
ψ = εψ (9)

which makes

E = ε

(
me4

h̄2

)
;
gram dyne2cm4

erg2sec2
= erg (10)

(ε is unit-less, hereafter to be called a.u. for atomic unit)
which resembles the Rydberg we’ve come to know and
love (Equation 6):

Ry =
me4

2h̄2

With A=1 (Hydrogen) and n=1 (the ground state), one
then has

EH = −Ry = −me
4

2h̄2 = −9.1× 10−28(4.8× 10−10)4

2
(

6.627×10−27

2∗3.14159

)2

which, since it comes out in ergs, can be converted to the
easier to remember eV value using 6.25× 1011 eV

erg . Thus

in this case, rearranging Equation 10 we have

E
h̄2

e4m
= ε

and therefore

−Ry h̄2

e4m
=
(
me4

2h̄2

)(
− h̄2

e4m

)
= −1

2
= ε(in au)

When E is (about) -13.6 eV for Z=1 we have ε = 1
2au

so

1
2
au = 13.6eV

and

1au = 2 ∗ 13.6eV
V. VERIFYING EIGENFUNCTIONALITY

Once one has a dimensionless form for the Schrödinger
Equation, 9, it becomes simple to “verify” whether or
not a function is an eigenfunction of the Hamiltonian,
i.e., solves the Schrödinger Equation. Consider, again,
the 1s case,

ψ1s = e−αr

We ask the question, what value of α is required to solve
the Schrödinger Equation? We had

−1
2
∇2

(r,θ,φ)ψ −
1
r
ψ = εψ

which is, for s-states

1
r2

∂
(
r2 ∂ψ∂r

)
∂r

− 1
r
ψ = εψ

Here is a MAPLE example for showing the above:

psi := exp(-alpha*r);
t1 := - ((1)/(2))*(1/r^2)*diff(r^2*diff(psi,r),r)-(1/r)*psi;
t1 := expand(t1/psi);#this line shows why the alpha=1 choice is needed
E_1s := subs(alpha=1,t1);

The resultant answer (-1/2) validates the assigning of the
value of the a.u. carried out previously.

VI. RESTORING THE A VALUE

We had in Equation 7

+
h̄2βα

mr
− h̄2α2

2m
− Ae2

r
β

= E
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where we set A equal to 1 in order to proceed. Now, we
allow A to continue having a value greater than or equal
to 1, so

+
(
h̄2βα

m
− βAe2

)
1
r
− h̄2α2

2m
= E

and now we set the coëfficient of 1
r equal to zero so that

this equation can be true for all values of r, i.e.,

+β
(
h̄2α

m
−Ae2

)
= 0

and since β isn’t zero, the part in parenthesis must be,
so

+
h̄2α

m
= Ae2

which means that the A dependent value of α should be

α =
Ae2m

h̄2

and since β = me2

h̄2

e−αR → e−αr/β → e−Ar = e−A
√
x2+y2+z2

VII. THE 2S ORBITAL

We need the Laplacian in spherical polar coördinates
rather than Cartesian coördinates (This is neither neces-
sary nor sufficient, just expedient).

∇2
r,ϑ,φ =

1
r2
∂
(
r2 ∂
∂r

)
∂r

+
1

r2 sin2 ϑ

(
sinϑ

∂
(
sinϑ ∂

∂ϑ

)
∂ϑ

+
∂2

∂φ2

)

We are interested in an s orbital, where the angular part
of the wave function is a constant possessing no partial
derivatives with respect to angles. Thus, we have

−1
2
∇2ψ − A

r
ψ = εψ = −1

2
1
r2
∂
(
r2 ∂
∂r

)
∂r

− A

r
ψ

(Equation 9) as the equation for the dimensionless
Schrödinger Equation. Now, we wish to attempt the dis-
cussion for the 2s orbital, to illustrate some aspects of
the dimensionless form. We assume ψtest (the analysis
which leads to the following form will be pursued when
the full H atom is discussed) exists and has the form

ψtest = (1 + γr)e−Ar/δ

so we have

−1
2

(
1
r2
∂r2 ∂ψtest

∂r

∂r

)
− A

r
(1 + γr)e−Ar/δ = ε(1 + γr)e−Ar/δ

or

−1
2

(
1
r2
∂
(
r2
(
γe−Ar/δ − A

δ (1 + γr)e−Ar/δ
))

∂r

)
− A

r
(1 + γr)e−Ar/δ = ε(1 + γr)e−Ar/δ

or

−1
2

(
1
r2
∂
(
r2
(
γ − A

δ (1 + γr)
)
e−Ar/δ

)
∂r

)
− A

r
(1 + γr)e−Ar/δ = ε(1 + γr)e−Ar/δ

yielding

−1
2

[
1
r2

(
2r
(
γ − A

δ
(1 + γr)

)
+ r2

(
−A
δ

(γ)
)

+ r2
(
γ − A

δ
(1 + γr)

)
−A
δ

)]
e−Ar/δ

−A
r

(1 + γr)e−Ar/δ = ε(1 + γr)e−Ar/δ (11)

which becomes, assuming that the equal sign is ultimately going to hold, and that therefore the exponential will cancel
from each term,

−1
2

[(
2
r

(
γ − A

δ
(1 + γr)

))
− Aγ

δ
−
(
γ − A

δ
(1 + γr)

)
A

δ

]
−A
r

(1 + γr) = ε(1 + γr) (12)
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or expanding selectively, (
−1
r

(
γ − A

δ
(1 + γr)

))
+

1
2
Aγ

δ

+
1
2

(
γ − A

δ
(1 + γr)

)
A

δ
− A

r
(1 + γr) = ε(1 + γr) (13)

which becomes

−γ
r

+
A

δr
(1 + γr) +

1
2
Aγ

δ
+
Aγ

2δ
− A2

2δ2
(1 + γr)− A

r
(1 + γr) = ε(1 + γr) (14)

or

−γ
r

+
A

δr
(1 + γr) +

Aγ

δ
− A2

2δ2
(1 + γr)− A

r
(1 + γr) = ε(1 + γr) (15)

which becomes

−γ
r

(
1− Ar

δ

)
+
A

δr
(1 + γr)− A2

2δ2
(1 + γr)− A

r
(1 + γr) = ε(1 + γr) (16)

But, adding and subtracting γr(
1− Ar

δ

)
=
(

1− Ar

δ
+ γr − γr

)
becomes (

1− Ar

δ

)
= (1 + γr)

and the part in square brackets can be forced to vanish
if A

δ + γ = 0. Then Equation 16 becomes

γ = −A
δ

and therefore

+
A

δr
(1 + γr)+

A

δr
(1+γr)− A2

2δ2
(1+γr)−A

r
(1+γr) = ε(1+γr)

(17)
or

+2
A

δr
(1 + γr)−A

r
(1+γr)− A2

2δ2
(1+γr) = ε(1+γr) (18)

so that the term(
2
δ
− 1
)(

A

r

)
(1 + γr)

can be forced to vanish if

2
δ
− 1 = 0

then δ = 2 is the required choice, and then

ε = − A2

2× 22

which is the “right” answer.
VIII. MAPLE TREATMENT OF THE 2S

ORBITAL

In MAPLE, we have (using a simpler scheme assuming
δ is 2 at the outset):

psi2 := (1+gamma*r)*exp(-(alpha/2)*r);# we’ve made some assumtions here
t2 := - ((1)/(2))*(1/r^2)*diff(r^2*diff(psi2,r),r)-(1/r)*psi2;
t2 := expand(t2/psi2);
t2a := coeff(t2,(1+gammma*r)^(-1));
t2b := coeff(t2a,1/r);
t2 := normal(subs(alpha=1,t2));
E_2s := normal(subs(gamma=-1/2,t2));

The answer here can be rewritten

−1
2

1
22

= −1
8

which is the correct value.
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