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ABSTRACT Effective activation of a recipient oocyte and its compatibility with the 1

nuclear donor are critical to the successful nuclear reprogramming during nuclear 2

transfer.  We designed a series of experiments using various activation methods to 3

determine the optimum activation efficiency of bovine oocytes.  We then performed 4

nuclear transfer (NT) of embryonic and somatic cells into cytoplasts presumably at G1/S 5

phase (with prior activation) or at metaphase II (M II, without prior activation).  Oocytes 6

at 24 h of maturation in vitro were activated with various combinations of calcium 7

ionophore A23187 (A187) (5 µM, 5 min), electric pulse (EP), ethanol (7%, 7 min), 8

cycloheximide (CHX) (10 µg/ml, 6 h), and then cultured in cytochalasin D (CD) for a 9

total of 18 h.  Through a series of experiments (Expt 1-4), an improved activation 10

protocol (A187/EP/CHX/CD) was identified and used for comparison of NT efficiency of 11

embryonic vs. somatic donor cells (Expt 5).  When embryonic cells from morula and 12

blastocysts were used as nuclear donors, a significantly higher rate of blastocyst 13

development from cloned embryos was obtained with G1/S phase cytoplasts than with M 14

II-phase cytoplasts  (36% vs. 11%, P<0.05).  In contrast, when skin fibroblasts were used 15

as donor cells, the use of an M II cytoplast (vs. G1/S phase) was imperative for blastocyst 16

development (30% vs. 6%, P<0.05).  Differential staining showed that parthenogenetic, 17

embryonic, and somatic cloned blastocysts contained 26%, 29% and 33% presumptive 18

inner cell mass (ICM) cells, respectively, which is similar to that of frozen-thawed in vivo 19

embryos at a comparable developmental stage (23%).  These data indicate that embryonic 20

and somatic nuclei require different recipient cytoplast environment for 21

remodeling/reprogramming, and this is likely due to the different cell cycle stage and 22

profiles of molecular differentiation of the transferred donor nuclei. 23

24 
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INTRODUCTION 1

Nuclear remodeling/reprogramming represents re-establishment of the totipotency 2

of an introduced nucleus with a progressive pattern of gene expression similar to that 3

occurring during the development of a fertilized embryo.  The mechanisms involved in 4

reactivation of the genome from either embryonic or differentiated somatic nucleus 5

during reprogramming remain unclear (Kikyo and Wolffe, 2000; Kühholzer and Prather, 6

2000; Reik et al., 2001; Rideout III et al., 2001).  In early nuclear transfer studies 7

conducted in sheep (Willadsen, 1986), cattle (Prather et al., 1987), rabbits (Stice and 8

Robl, 1988), and pigs (Prather et al., 1989), the genome of an embryonic nucleus, was 9

introduced into a metaphase II cytoplasm.  Later, studies in sheep demonstrated that the 10

use of recipient cytoplasm at a presumable G1/S phase by pre-activation of the oocyte led 11

to an improved developmental competence of the resultant embryos (Campbell et al., 12

1994, 1996).  This finding was confirmed by several other studies (Stice et al., 1994; Du 13

et al., 1995; Loi et al., 1998; Piotrowaska et al., 2000).  More recently, the innovation of 14

somatic cell nuclear transfer has produced live clones in sheep (Wilmut et al., 1997), 15

cattle (Cibelli et al., 1998; Kato et al., 1998; Wells et al., 1999; Hill et al., 2000; Kubota 16

et al., 2000), mice (Wakayama et al., 1998), goats (Baguisi et al., 1999, Zou et al., 2001, 17

Keefer et al., 2002), pigs (Betthauser et al., 2000; Onishi et al., 2000; Polejaeva et al., 18

2000), cat (Shin et al., 2002) and rabbits (Chesne et al., 2002).  In most of these cases, the 19

nucleus from highly differentiated Go cell or active dividing cell (G1) was transferred 20

into a metaphase II oocyte.  No efforts have been made, however, to directly compare the 21

developmental competence of embryos cloned from different donor cells, embryonic vs. 22

adult somatic, and recipient cytoplasts of different activation status, G1/S (pre-activated) 23
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or MII phase.  Furthermore, efficient and reliable activation of the recipient oocyte is 1

crucial for competent interaction between a donor nucleus and the recipient cytoplast, and 2

is thought to greatly enhance the efficiency of successful NT (Kono et al., 1994; Stice et 3

al., 1994; Campbell et al., 1996; Wilmut et al, 1997; Wells et al., 1999). 4

In this study we tested a series of combined activation procedures and selected the 5

best protocol for subsequent nuclear transfer using embryonic and somatic cells as 6

nuclear donors. We report here that while pre-activated cytoplasts are beneficial for 7

embryonic nuclear transfer, M II cytoplasts are essential for somatic cell nuclear transfer. 8

MATERIALS AND METHODS 9

Media and Chemicals 10

Basic culture was in Medium 199 (M199) with Earle’s salts, L-glutamine, 2.2 g/l 11

sodium bicarbonate, and 25 mM HEPES (Gibco, 12340-014) containing 7.5% (v/v) fetal 12

calf serum (Gibco, 26140-012) (M199+FCS).  Maturation medium consisted of 13

M199+FCS supplemented with 0.5 µg/ml ovine FSH, 5.0 µg/ml ovine LH (NIDDK) and 14

1.0 µg/ml estradiol (Sigma, E-8875).  The media utilized for washing ovaries and oocytes 15

consisted of Dulbecco’s phosphate buffered saline (D-PBS; Gibco, 15240-013) 16

containing 0.1% polyvinyl alcohol (PVA; Sigma, P-8136) (D-PBS+PVA).  Calcium free 17

D-PBS+PVA was used for preparing 0.2% hyaluronidase (Sigma, H-3506) solution in 18

addition to some activation solutions.  Activation solutions were as follows: 5 µM19

calcium ionophore A23187 (A187) (Sigma, C-7522), 7% ethanol in calcium free D-PBS-20

PVA (ETOH), and 10 µg/ml cycloheximide (CHX) (Sigma, C-6255) in M199+FCS.  21

Electric-pulse (EP) treatment medium consisted of 0.3 M mannitol, 0.05 mM CaCl2, 0.122

mM MgSO4 and 0.5 mg/ml bovine serum albumin (BSA) (Fraction V, Sigma, A-9647).  23
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Cytochalasin B (CB) (Sigma, C-6762) at concentrations of 2.5, 5, 7.5 µg/ml, and 1

cytochalasin D (CD) (Sigma, C-8273) at 2.5 µg/ml were dissolved in M199+FCS 2

depending on the experimental design.  Frozen embryos were thawed by a stepwise 3

procedure in: a) D-PBS with 0.4% BSA, 6% glycerol and 0.3 M sucrose, b) D-PBS with 4

0.4% BSA, 3% glycerol and 0.3 M sucrose, c) D-PBS with 0.4% BSA and 0.3 M sucrose, 5

and d) 0.4% BSA in D-PBS for 5 min each.  The zona pellucida of the donor embryos 6

were removed by acidic D-PBS (pH 2.3) and 0.5% pronase (Sigma, P-6911) in M199.  7

The solution to desegregate embryonic blastomeres was 0.25% trypsin (Sigma, T-0646) 8

in Hank’s balanced salt solution (HBSS; Gibco, 450-1250EB).  Micromanipulation 9

medium for enucleation and donor cell transfer was M199+FCS containing 7.5 µg/ml 10

CB.  Skin fibroblast cells were cultured in Dulbecco’s Minimum Eagle’s medium 11

(DMEM; Gibco, 31600) supplemented with 10% FBS (Hyclone, SH0070.03) and 12

antibiotics (Gibco, 15240-013) at 37oC in 5% CO2 humidified air.  Medium M2, 13

containing 4 mg/ml BSA was the basic solution for differential staining.  Before staining, 14

the following chemicals and solutions were prepared: 10 mM 2, 4, 6-15

Trinitrobenzenesulfonic acid (TNBS) (Sigma, P-2297), 0.1 mg/ml anti-DNP-BSA (ICN, 16

610006-1), specified concentration of guinea pig complement (Sigma, S-1639), 2.5 17

mg/ml propidium iodide (PI; Sigma, P-4170), and 5 µg/ml Hoechst 33258 (Sigma, B-18

2883). 19

Oocyte Maturation In Vitro, Selection and Activation 20

Oocytes used in this study were aspirated from antral follicles of slaughterhouse 21

ovaries as described previously (Yang et al., 1993).  Oocytes with at least 4 layers of 22

cumulus cells were selected, washed three times in D-PBS+PVA, one time in maturation 23



6

medium, and then cultured for 20-22 h in 5% CO2 and 95% humidified air at 39 oC.  1

Cumulus cells were then stripped from the oocytes by 5 min of incubation in 0.2% 2

hyaluronidase and 1.5 min vigorous vortexing.  Denuded oocytes with a polar body were 3

selected and randomly allocated to various activation or enucleation treatments. 4

In a series of activation studies different repetitive and combined activation 5

protocols were compared according to the experimental design detailed below.  Briefly, 6

oocytes were activated by various activation procedures beginning at 24 h post 7

maturation (hpm).  Activation stimuli included A23187, 5 µM for 5 min; EP, 1.2 kV/cm, 8

for 30 µsec unless indicated otherwise; CHX 10 µg/ml in M199-FCS for 6 h (24-30 9

hpm), and subsequently 2.5 or 5 µg/ml CB or 2.5 µg/ml CD in M199-FCS for 18 h (24-10

42 hpm). 11

Donor embryos and embryonic cell isolation for nuclear transfer 12

Embryonic donor cells for NT were derived from frozen embryos produced in 13

vivo at late morulae and early blastocyst stage.  Embryos were thawed at 21-27°C in air 14

for 10 sec, then in a 27°C water bath for less than 10 sec.  Glycerol was removed in four 15

steps of 5 min each by systematically pre-washing with the thawing solutions described 16

above with decreasing concentrations of glycerol.  The thawed embryos were then 17

transferred into M199-FCS and cultured for 30-45 min. 18

After removal of the zona pellucida, embryos were incubated for 2-3 min in cell 19

disaggregating solution and gently pipetted with a fine, fire-polished capillary pipette in 20

M199+FCS until individual cells were disaggregated.  Isolated cells had diverse 21

morphology, and only the small, round-shaped and healthy looking cells were selected 22

for NT. 23
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Adult fibroblast cell culture and donor cell preparation 1

Skin explants taken from the ear of Aspen, a 13-year-old dairy cow with a high 2

milk yield from the University of Connecticut's herd, were cultured in Falcon 35x10 mm 3

culture dishes (Becton Dickinson, 3001) with 10% FBS DMEM at 37oC in 5% CO24

humidified air.  Fibroblast monolayers formed around the tissue explants in about two 5

weeks.  The explants were then removed and placed into new culture dishes.  Cultures of 6

the fibroblasts were continued until confluency was reached.  For passaging, cells were 7

washed with 1 ml of Dulbecco’s PBS, then gently digested by a three-minute incubation 8

in 250 µl 0.05% trypsin (ICN, 103140) and 0.5 mM EDTA (Baker, 8991) at 37 oC.  The 9

reaction was terminated by adding 10% FBS in DMEM.  Subsequently, the cell 10

suspension was centrifuged at 1000 rpm for 5 min, and cells were then resuspended and 11

divided into three new dishes and maintained for 6-7 days.  Cells cultured to different 12

passages were collected and frozen in 10% dimethylsulfoxide DMSO (Sigma, D5879) at 13

–80 oC and stored in liquid nitrogen. 14

In this study fibroblast cells at passage 5 or 6 were used for nuclear transfer.  15

Briefly, after reaching confluency, donor cells were serum starved in 0.5% FBS DMEM 16

for 4-5 days.  Cells were then disassociated by 2-3 min of trypsinization at 37oC, and 17

resuspended in 0.5 % FBS in DMEM.  Finally, cell suspensions were allowed to recover 18

for about 45 min at 37oC before nuclear transfer. 19

Culture and evaluation of parthenogenetic and cloned embryos in vitro 20

Activated oocytes and nuclear transferred embryos were cultured in M199 21

medium supplemented with 7.5% FBS for 8 days (initiation of activation = day 0) on 22

buffalo rat liver cell (BRLC) monolayers.  Cleavage and blastocyst development rates 23
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were recorded on Day 3 and Day 8, respectively.  The cell number of the blastocysts was 1

evaluated either by fluorescent microscopy following staining with 10µg/ml Hoechst 2

33342, or by differential staining described below. 3

Experiment 1. Comparison of activation protocols 4

Five activation treatments were included.  Electric pulse field strength was 1.2 5

kV/cm in this experiment except for Treatment D (1.0 kV/cm, 90 µsec).  In Treatment A, 6

oocytes were sequentially activated with A187 at 24 hpm, EP at 25 hpm, then cultured in 7

CHX for 6 h, followed by two electric pulses (EP) 30 min apart at 31 hpm 8

(A187/EP/CHX/EPx2).  In Treatment B oocytes were stimulated as for Treatment A 9

except that EP stimulation was given at 24 hpm instead of A187 (EP/EP/CHX/EPx2).  In 10

Treatment C, oocytes were activated with EP at 24 hpm, ETOH at 25 hpm, followed by 11

the same procedures as for treatments A and B (EP/ETOH/CHX/EPx2).  In Treatment D, 12

oocytes were treated with A23187 at 24 hpm, EP, 1.0 kV/cm, 90 µsec at 25 hpm, CHX 13

for 6 h and CD for 18 h (A187/EP90/CHX/CD).  Treatment E was a non-stimulation 14

control (Table 1). 15

Experiment 2. Comparison of electric pulses 16

Five treatments were designed to examine the effect of the intensity and duration 17

of electric pulses on embryonic development of activated oocytes.  Oocytes in Treatment 18

D (A187/EP90/CHX/CD) were handled as in Treatment D in Exp. 1, while oocytes in 19

treatments A, B, and C were activated as in Treatment D except for the EP stimulus being 20

varied to 1.2 kV/cm 30, 45, and 60 µsec for treatments: A (A187/EP/CHX/CD), B 21

(A187/EP45/CHX/CD) and C (A187/EP60/CHX/CD), respectively.  Treatment E was 22

conducted as for Treatment A but without CD incubation (A187/EP/CHX) (Table 2). 23
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Experiment 3. Effect of cytochalasins on parthenogenetic development 1

Treatments A, B, and C were the same as in Treatment A of Exp. 1.  However, the 2

oocytes were incubated for 18 h in 2.5 µg/ml cytochalasin B (CB) (A, 3

A187/EP/CHX/CB2.5/EPx2), 5 µg/ml CB (B, A187/EP/CHX/CB5/EPx2) and 2.5 µg/ml 4

cytochalasin D (CD) (C, A187/EP/CHX/CD/EPx2), respectively.  Treatment D was the 5

same as for Treatment D in Exp.1 (A187/EP90/CHX/CD) (Table 3). 6

Experiment 4. Effect of fusion pulses on parthenogenetic development 7

In previous studies, we had found that two EPs (30 min apart) at 31 hpm had 8

enhanced the membrane fusion and development of NT embryos (Du et al., 1995).  We, 9

therefore, directly compared whether there was a difference between in vitro 10

development of activated oocytes from Treatment C in Exp. 3 11

(A187/EP/CHX/CD/EPx2), and Treatment A in Exp. 2 (A187/EP/CHX/CD). 12

Experiment 5.  NT with metaphase II (MII) and pre-activated (G1/S) cytoplasts 13

Recipient oocyte enucleation was conducted in M199+FCS containing 7.5 µg/ml 14

CB at 22 hpm by aspiration of the first polar body and its surrounding cytoplasm, ~1/8 15

total oocyte volume.  Successful enucleation was confirmed by fluorescent microscopy 16

after staining with 10µg/ml Hoechst 33342.  For activation prior to NT, enucleated 17

oocytes were activated with the optimal procedure as determined from previous 18

experiments (A187/EP/CHX) from 24 to 30 hpm that induced pre-activated G1/S 19

cytoplasts.  Embryonic donor cell insertion was completed during 30-31 hpm and 20

membrane fusion was induced at 31 hpm with two EPs (1.2 kV/cm, 30 µsec) 30 min. 21

apart.  In the case of NT into MII cytoplasts, donor cells were transferred at 24 hpm, and 22

electric fusion was completed by about 25 hpm.  After the second electric pulse, oocyte-23
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donor cell complexes were incubated for 15-30 min in 20% FBS in PBS at room 1

temperature before being subjected to further activation procedures (A187/EP/CHX) 2

between 25 and 31 hpm.  Fusion rates were determined 90 min after the first fusion pulse.  3

Following activation the fused embryos were cultured in M199+FCS on BRLC 4

monolayers (Rehman et al., 1994). 5

In NT with embryonic cells, Treatment A was NT into pre-activated cytoplasts 6

(A187/EP/CHX/NT) while Treatment B was NT into a cytoplast without prior activation 7

(MII/NT/A187/EP/CHX) (Table 5). 8

When somatic nuclei from skin fibroblasts were used as the donors, NT with pre-9

activated (Treatment C) and metaphase II (Treatment D) cytoplasts was completed as 10

described above (Table 5).  Small donor cells with an approximate diameter of 12-15 µm11

were allocated for transfer into the perivitelline space of enucleated oocytes (Vignon et 12

al., 1998).  Somatic donor cell-cytoplasm pairs were fused by applying two direct current 13

pulses at 2.0 kV/cm for a duration of 10 µsec/each pulse.  Following the completion of 14

electric fusion, there was also an 15 min incubation at room temperature before activation 15

with the optimal regime of A187/EP/CHX was applied. 16

Differential staining 17

Embryos were allowed to develop to Day 8.  Early blastocysts (BL), regular BL, 18

expanded BL and hatched BL were harvested from parthenogenetic, cloned and in vivo 19

produced embryos.  Expanded and hatched BLs were subjected to differential staining.  20

After removal of the zona pellucida, embryos were treated with 10 mM TNBS for 10 min 21

at 4°C, washed 3 times in M2-BSA and incubated in 0.1 mg/ml anti-DNP-BSA for 10 22

min at 39°C, washed in M2-BSA again to remove surplus antibody, then treated by a 12 23
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min incubation with guinea pig complement solution and 0.25 mg/ml propidium iodide.  1

The embryos were then stained with 0.5 mg/ml Hoechst 33258 in ethanol for at least 1 h 2

to distinguish presumptive inner cell mass (ICM) whose nuclei stained blue.  Presumptive 3

trophectoderm (TE) cells were stained by both propidium and Hoechst 33258, and 4

differentially indicated by a pink stain.  Embryos were mounted and gently squashed 5

under a cover slip for counting of nuclei under fluorescent microscopy. 6

Statistical Analyses 7

Proportions of embryos reaching cleavage and developing to the blastocyst stage 8

from various treatments within each experiment were analyzed by Chi-square (Snedecor 9

and Cochran, 1980) or student’s t-test.  The mean number of nuclei for each embryo was 10

compared by one-way ANOVA.  The P values less than 0.05 are considered as significant 11

between the treatments. 12

RESULTS 13 

Experiment 1 14

After in vitro maturation of oocytes for 20 h, cumulus cells had expanded as 15

shown in Fig 1.A.  Following parthenogenetic activation, oocytes usually cleaved to the 16

4-8 cell stage at 44-48 hr of in vitro culture, and further developed to compacted morula 17

(Fig 1.B) on Day 4, and to expanding blastocysts (Fig 1.C) on Day 8 in accordance to the 18

developmental pace expected for in vitro fertilized embryos.  The proportion of 19

degenerated oocytes following activation in Treatments B (27%), and D (38%) were 20

significantly higher than in Treatments A (4%), C (4%) and control E (0%) (P<0.05).  21

Oocyte degeneration frequently took place before two electric pulses were applied at 31 22

hpm.  Among the survived oocytes in Treatments A, B, C, and D, the oocytes with good 23
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quality were selected for continuous in vitro culture.  There was no difference among 1

Treatments A, B, or C in terms of cleavage and blastocyst development after culture in 2

vitro, and no difference among Treatment A, B, C, and D for the overall rate of blastocyst 3

development (Table 1).  Despite the high percentage of oocyte lysis in Treatment D when 4

compared to Treatments A, B and C, a significant higher rate of cleavage to 2-8 cells 5

(74% vs. 42-53%, P<0.05) and subsequent embryonic development to blastocyst stage 6

(31% vs. 8-14%, P<0.05) (Table 1) were observed.  In the control group (Treatment E), 7

11% of oocytes underwent spontaneous activation and cleavage to the 2-8 cell stage, but 8

no further development was observed.  Thereafter, experiments were specifically 9

designed to determine whether the higher degree of oocyte lysis was due to the duration 10

of the EP and cytochalasin incubation (Exp.2), or if the development was improved by 11

the cytochalasin treatment (Exp. 3). 12

Experiment 2 13

This experiment was designed to test if a longer duration of electrical pulse 14

resulted in a significantly higher incidence of oocyte lysis.  As shown in Table 2, when 15

1.2 kV/cm was applied and the duration was increased from 30 µsec in Treatment A to 45 16

µsec in Treatment B, 11% and 17%, respectively, of the oocytes were lysed, while 28% 17

in Treatment C were degenerated after subjected to a pulse of 1.2 kV/cm for 60 µsec, 18

significantly higher than Treatments A and B (P<0.05).  When the duration of the pulse 19

(1.0 kV/cm) was increased to 90 µsec in Treatment D, up to 42% of the oocytes were 20

completely lysed, significantly higher than Treatments A, B and C (P<0.05).  In contrast 21

to other groups, Treatment E, in which oocytes were activated as for Treatment A but 22

without cytochalasin D incubation, represented the lowest lysis (2%), significantly lower 23
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than Treatments A, B, C and D (P<0.05).  The overall blastocyst development varied 1

from 22 to 29% in Treatments A and B, which was significantly higher than Treatments 2

D and E.  The highest rate of development (29%) was achieved in Treatment A that was 3

significantly higher than Treatments C, D and E (Table 2).  We concluded, therefore, that 4

oocyte lysis was caused by both prolonged exposure to electric pulse and culture with 5

cytochalasin D.  Interestingly, the cleavage and blastocyst development of oocytes in 6

Treatments A, B, C and D were not different from each other.  These values, however, 7

were significantly higher than those in Treatment E (P<0.05), indicating the beneficial 8

effect of cytochalasin D on the development of parthenogenetic oocytes. 9

Experiment 3 10

From the results of Exp. 2, Treatment A (least oocyte lysis) was selected to 11

determine the effect of cytochalasins on embryo development (Table 3).  There was no 12

difference in the extent of cell lysis between Treatments A to C with various 13

concentrations of cytochalasin D or cytochalasin B (A: 15%; B: 14%; C: 12%; P>0.05). 14

A significantly higher rate of oocyte lysis was found in Treatment D (53%, P<0.05).  15

However, live parthenogenetic oocytes showed similar cleavage rates and blastocyst 16

development among Treatments A and B (P>0.05).  In contrast, oocytes in Treatment C 17

gave rise to 38% blastocyst development, better than any cytochalasin B treatments 18

although there was no difference between the cytochalasin D groups.  The overall 19

efficiency of blastocyst development in Treatment C was 26% when all oocytes used 20

were taken into consideration and this is the highest among all treatments (Table 3).  As a 21

result, Treatment C in Exp.3 was selected as the optimal regime to parthenogenetically 22

activate bovine oocytes in the next series of experiments. 23
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Experiment 4 1

To further determine the effect of repetitive electrical pulses in initiating 2

membrane fusion (30 min apart, applied at 31 hpm) following NT, Treatment A in Exp. 2 3

and Treatment C in Exp. 3 were compared.  Data showed neither cleavage (78%, n=228 4

vs. 81%, n=245) nor subsequent development to blastocyst (35%, n=228 vs. 40%, n=245) 5

was influenced by these treatments (P>0.05), a consistently high 40% blastocyst 6

development rate was achieved. 7

Experiment 5 8

With the optimized activation protocol selected (A187/EP/CHX), we conducted a 9

series of NTs with a 2x2 factorial combination of MII vs. pre-activated cytoplasts and 10

embryonic vs. somatic nuclei.  The fusion rate was higher in embryonic NT group (A, 11

75% and B, 79%) than that in the somatic NT group (C, 43% and D, 49%) (P<0.05).  12

When the donor nuclei were embryonic cells (Fig 1, E to G), pre-activation of recipient 13

cytoplasts (Treatment A, Fig 1, F) significantly improved the cloned embryo's ability to 14

undergo cleavage (77% vs. 50%, P<0.05) and blastocyst (Fig 1, G) development (36% 15

vs. 11%, P<0.01) as compared to NT into M II cytoplasm (Table 4).  Interestingly, 16

enucleated oocytes without transfer of donor nuclei can also undergo parthenogenetic 17

development.  Some cytoplasts could finish several cell divisions developing to the 8-cell 18

stage before degenerating (data not shown).  In contrast, when NT was conducted with 19

cultured somatic cells as donors (Fig 1, I), metaphase phase (MII) recipient cytoplasm 20

(Fig 1, J) greatly enhanced the extent to which early embryos cleaved (Fig 1, K) (76% vs. 21

58%, P<0.05) or developed to blastocysts (30% vs. 6%, P<0.05). 22

Analysis of Cell Allocations to TE or ICM 23
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As shown in Table 5, following embryo immunosurgery and differential staining, 1

the total number of nuclei in expanded or hatching blastocysts between parthenogenetic 2

(Fig 1, C, D) and NT (Fig 1, G, H) groups was not significantly different (Table 5).  The 3

proportion of ICM in different types of blastocysts was not significantly different for 4

embryonic NT, somatic NT, parthenogenetic and frozen in vivo derived embryos, shown 5

as 29%, 33%, 26% and 23%, respectively.  Cloned blastocysts developed from an 6

activated cytoplast and an embryonic nucleus (Fig 1, G, H), or from an MII cytoplast and 7

a somatic nucleus (Fig 1, K, L) showed a similar total cell number and ICM/TE ratio.  8

There was also no difference between NT and parthenogenetic hatched embryos with 9

respect to the percentage of pycnotic cells.  However, some parthenogenetic embryos 10

were observed with a sporadic and dislocated distribution of ICM cells (58%, n=38) and 11

an apparent variation in nuclear volume ranging from less to more than the average of the 12

group (45%, n=38). 13

DISCUSSION 14 

In the present study, we compared various activation protocols and showed that 15

the development of cloned embryos reconstructed from either embryonic or somatic 16

nuclei require cytoplasts in different activation status for optimal development.  In our 17

study with embryonic donor nuclei, nuclear transfer into pre-activated oocytes resulted in 18

a high percentage, 36%, of blastocysts, while only 11% of embryos without prior 19

activation developed blastocysts.  During early development, the embryonic cells divide 20

very rapidly and mitosis is relatively short.  The interphase of cell cycle in most 21

embryonic cells in pre-implantation embryos of mice, sheep and cattle is notably 22

occupied by S phase (Collas et al., 1993, Campbell et al., 1994).  After fusion between an 23
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S phase cell and an metaphase cell (Johnson and Rao, 1970), active maturation promoting 1

factor (MPF) in the metaphase cell or oocyte initiates nuclear envelope breakdown 2

(NEBD) and premature chromosome condensed (PCC), resulting in a pulverized 3

chromatin appearance (Sperling and Rao, 1974; Szöllösi et al., 1988; Barnes et al., 4

1993).  Pulverized PCC may cause the breakage of chromatin and the damage to DNA 5

duplexes in donor nuclei.  Therefore, it is essential to synchronize the recipient oocyte 6

and the S phase nucleus during nuclear transfer.  Activation of cytoplasts prior to nuclear 7

transfer makes the recipient oocyte transit from MII to G1/S phase, resulting in a 8

universal cytoplasm for the donor nucleus, and allowing continuous DNA synthesis to 9

occur in the S phase donor nucleus (Campbell et al., 1994, 1996).  Although transplanting 10

blastomere nuclei into M II cytoplasts has produced full term development in sheep 11

(Willadsen, 1986), rabbits (Stice and Robl, 1988), cattle (Prather et al., 1987), and pigs 12

(Prather et al., 1989), nuclear-cytoplasm synchronization in embryonic cell nuclear 13

transfer increases the developmental efficiency of the reconstructed embryos (Collas et 14

al., 1993; Campbell et al., 1994; Kono et al., 1994).  Recently, prior activation of 15

recipient oocytes resulted in successful nuclear transfer of embryonic cells in cattle 16

(Kubota et al., 1998), Rhesus monkeys (Meng et al., 1997) and rabbits (Piotrowaska et 17

al., 2000). 18

Alternatively, nuclear transfer with differentiated skin cells and M II cytoplasts 19

yielded significantly higher early development when compared to those transferred into 20

pre-activated recipient cytoplasts.  In our study, cultured skin fibroblasts were serum 21

starved for 4-5 days, and were thus synchronized at Go/G1 phase (Kubota et al., 2000).  22

An M phase cell induces the G1 nucleus into a pattern of PCC with intact single 23
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chromatids (Sperling and Rao, 1974).  During somatic nuclear transfer, this chromatin 1

modification due to NEBD and PCC by the MII cytoplast may facilitate the course of 2

reprogramming of differentiated nucleus such as an epithelial cell (Wilmut et al., 1997), 3

cumulus cell (Kato et al., 1998) adult mural granulosa cell (Wells et al., 1999), and skin 4

fibroblast (Hill et al., 2000; Kubota et al., 2000).  It is possible that certain degrees of 5

PCC can induce chromatin rearrangement in the donor nucleus that facilitates the process 6

of demethylation of the highly methylated genome.  It is unclear, however, that the 7

minimum time somatic nucleus should be exposed to a high level of MPF in the cytoplast 8

for complete nuclear reprogramming (Wilmut et al., 1997; Wakayama et al., 1998; 1999).  9

Wells et al. (1999) demonstrated that exposure of a quiescent nucleus to enucleated MII 10

cytoplast for 4-6 h before activation resulted in an increased proportion (up to 27.5 %) of 11

fused embryos developing into blastocysts.  Similarly, nuclei introduced either by electric 12

fusion in cattle (Cibelli et al., 1998; Wells et al., 1998) or direct nuclear injection in pigs 13

(Onishi et al., 2000) were subjected to a 2-6 hour exposure to MII cytoplast before 14

activation.  In our study, however, a 30% blastocyst development was obtained when 15

oocyte-donor cell complexes were activated no longer than 15 min after cell fusion.  16

When cumulus cells from the same donor animal were used with the same timing of 17

activation, as high as 50% blastocysts development was achieved (data not shown).  18

Recently, short exposure of somatic nuclei from a genetically modified fetal cell line in 19

MII cytoplasts resulted in cloned blastocysts that produced pregnancies (Du and Yang, 20

2002, unpublished data).  Further experiments will be of interest to determine the 21

minimum period of exposure necessary for the complete reprogramming of a 22

differentiated nucleus. 23
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The factors affecting nuclear reprogramming are mysterious and unclear (Fulka et 1

al., 1998), nevertheless, it is unambiguous that these remodeling factors are uniquely 2

present in the oocyte cytoplasm, and this oocyte reprogramming ability for differentiated 3

somatic nucleus vanishes after pre-activation.  Our finding with skin fibroblasts (from a 4

13-year-old cow) as nuclear donors is in accordance with the results of Tani et al. (2001) 5

using cumulus cells.  We believe that unknown somatic remodeling factors have a critical 6

impact on the reprogramming of a differentiated nucleus, and on the developmental 7

potential of the fused embryos, however, they appear to be unstable and lose their 8

function after parthenogenetic activation.  In contrast, it seems likely that this influence 9

of remodeling factors in the oocyte on the embryonic nucleus is nominal. Donor cells 10

from compacted morula and blastocysts, as those used in our study, are in a state of 11

undifferentiated development, and possess a low degree of methylated genomic DNA 12

(Kühholzer and Prather, 2000; Ridout III et al., 2001).  Due to reduced DNA methylation, 13

cloned embryos derived from embryonic nuclei will share similar processes with ES cell-14

derived clones that may need little or no reprogramming of genes for early development 15

(Ridout III et al., 2001).  Therefore, we assume that the differentiation state of a 16

transplanted donor karyoplast may have some influence over the extent of its 17

reprogramming.  In other words, remodeling of a donor genome by a recipient oocyte is 18

dependent upon the molecular differentiation existed in this nucleus, such as methylation, 19

one of the major differentiation events and epigenetic modifications of the genome during 20

mammalian development (Reik et al; 2001). 21

The efficiency of combined activation could still be improved to further increase 22

nuclear transfer efficiency.  In the present study, we have shown that in vitro matured 23
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bovine oocytes can be effectively activated and as many as 40% of them can undergo 1

further parthenogenetic development to blastocysts (Expt 1-4).  The optimal 2

parthenogenetic activation procedure is a combined treatment of 5 µM A23187 for 5 min 3

at 24 hpm, 1.2 kV/cm of EP for 30 µsec 1 hr later, 10 µg/ml cycloheximide for 6 h (24-42 4

hpm) in addition to culture in 2.5 µg/ml cytochalasin D (A187/EP/CHX/CD).  The 5

synergistic effects of repetitive and combined activation treatments cause destruction of 6

existing MPF and prevents further synthesis of new MPF in the oocytes.  The commonly 7

used activation reagents/stimuli are broad-spectrum modulators of calcium concentration 8

(Cuthberston, 1981; Ware et al., 1992; Stice et al., 1994), inhibitors of protein synthesis 9

(Presicce and Yang, 1994; Piotrowska et al., 2000) and phosphorylation (Susko-Parrish et 10

al., 1994; Loi et al., 1998).  In addition, the detrimental effects of high intensity electric 11

shock is possibly attributed to damage to the oocyte's membrane and cytoplasmic 12

components (Zimmerman and Vienken, 1982).  Cytochalasins are microfilament 13

inhibitors and serve to suppress the extrusion of the second polar body, which sustain the 14

diploid state of the activated oocytes.  Our study confirms the observation that both 15

cytochalasins B (Kono et al., 1989, Fukui et al., 1992) and D (Minamihashi et al., 1993) 16

improve parthenogenetic development.  It makes no doubt that the development of 17

reagents specific for modulations of proteins involved in oocyte activation will greatly 18

improve the nuclear transfer efficiency. 19

In the present study, we found that parthenogenetically activated and NT 20

blastocysts have similar TE and ICM cells to those in frozen in vivo embryos, but both 21

parthenogenetic and cloned embryos had reduced total cell numbers, as well as ICM 22

numbers, when compared to those of in vivo produced embryos (Du and Yang, 23
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unpublished data).  It is unknown whether the lower number of cells in the cloned 1

embryos was a result of nuclear reprogramming or was due to the developmental 2

potential of the parthenogenetically activated recipient cytoplasts. 3

In conclusion, more effective activation and parthenogenetic development in 4

cattle was achieved with a combination treatment consisting of calcium ionophore, 5

electric pulse and cycloheximide.  Higher in vitro development was achieved when 6

embryonic and somatic donor cells were transferred into pre-activated and MII 7

cytoplasts, respectively. 8

9

10 
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Table 1. Development of bovine oocytes following different activation procedures1

Treatment No.
rep

Total No.
oocytes

No. (%)
oocytes lysed

No. of oocytes
cultured*

No. (%)
cleaved

No. (%)
BL

% (overall
BL rate)

A. A187/EP/CHX/EPx2 4 134 5 (4)a 90 48 (53)a 13 (14)a 10a

B. EP/EP/CHX/EPx2 4 156 42 (27)b 90 45 (50)a 7(8)a 4a,b

C. EP/ETOH/CHX/EPx2 4 135 5 (4)a 90 38 (42)a 11 (12)a 8a

D. A187/EP90/CHX/CD 4 211 80 (38)b 90 67 (74)b 28 (31)b 13a

E. Control 4 102 0 (0)a 102 11 (11)c 0c 0b

abcValues with different superscripts within columns differ, P<0.05. A187, calcium ionophore A23187;2

CD, cytochalasin D; CHX, cycloheximide; EP, electrical pulse; EPx2, two electrical pulses applied;3

EP90, electrical pulse at 90 µsec; ETOH, ethanol. *The oocytes from each group are selected for further culture experiment, and4

leftover oocytes are fixed and subjected to morphological evaluation (data not shown). The overall blastocyst rates were5

calculated using total number of oocytes in each treatment.6

7

8

9
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Table 2. Effect of intensity of electric pulse on parthenogenetic development1

Treatment No.
rep

Total No.
oocytes

No. (%)
oocytes lysed

No. of oocytes
cultured

No. (%)
cleaved

No. (%)
BL

% (overall
BL rate)

A. A187/EP/CHX/CD 3 122 13 (11)a 109 86 (79)a 36 (33)a 29a

B. A187/EP45/CHX/CD 3 122 21 (17)a 101 74 (73)a 27 (27)a 22a,b

C. A187/EP60/CHX/CD 3 122 34 (28)b 88 62 (70)a 24 (27)a 20b,c

D. A187/EP90/CHX/CD 3 122 51 (42)c 71 52 (73)a 15 (21)a 12c,d

E. A187/EP/CHX 3 122 2 (2)d 120 55 (46)b 11 (9)b 9d

abcdValues within columns with different superscripts differ, P<0.05. A187, calcium ionophore A23187;2

CD, cytochalasin D; CHX, cycloheximide; EP, electrical pulse; EP 45, EP60, and EP90 represent electrical3

pulse at 45, 60 and 90 µsec, respectively. The overall blastocyst rates were calculated using total number of oocytes in each4

treatment.5

6
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Table 3. Effect of cytochalasins on parthenogenetic development1

Treatment No.
rep

Total No.
oocytes

No. (%)
oocytes lysed

No. of oocytes
cultured*

No. (%)
cleaved

No. (%)
BL

% (overall
BL rate)

A. A187/EP/CHX/CB5/EPx2 5 206 31 (15)a 139 97 (70)a 29 (21)a 14a

B.A187/EP/CHX/CB2.5/EPx2 5 210 29 (14)a 142 96 (68)a 37 (26)a 17a

C. A187/EP/CHX/CD/EPx2 5 205 25 (12)a 141 104 (74)a 54 (38)b 26b

D. A187/EP90/CHX/CD 5 264 141 (53)b 113 84 (74)a 35 (31)ab 13a

abValues within columns with different superscripts differ, P<0.05. A187, calcium ionophore A23187;CB2.5, cytochalasin B at2

2.5 µg/ml; CB5, cytochalasin B at 5.0 µg/ml; CD, cytochalasin D; CHX, cycloheximide; EP, electrical pulse; EP90, electrical3

pulse at 90 µsec. *The oocytes from each group are selected for further culture experiment, and leftover oocytes are fixed and4

subjected to morphological evaluation (data not shown). The overall blastocyst rates were calculated using total number of5

oocytes in each treatment.6

7

8



32

Table 4. Development of NT embryos with embryonic and somatic donor nuclei1

Treatment No.
rep

No. of donor
oocyte pairs

No.(%) of
fused

No. (%)
cleaved*

No. (%)
BL*

Embryonic donor NT
A. A187/EP/CHX/NT 5 233 184 (79)a 142 (77)a 66 (36)a

B. MII/NT/A187/EP/CHX 5 97 73 (75)a 37 (50)b 8 (11)b

Somatic donor NT
C. A187/EP/CHX/NT 5 249 107 (43)b 62 (58)b 6 (6)b

D. MII/NT/A187/EP/CHX 5 253 124 (49)b 94 (76)a 37 (30)a

a,bValues within columns with different superscripts differ, P<0.05. A187, calcium ionophore A23187; CHX,2

cycloheximide; EP, electrical pulse; MII, metaphase II; NT, nuclear transfer. *The rates of development to3

cleavage and blastocyst in NT embryos were calculated from the number of fused embryos.4

5

6
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Table 5. Analysis of TE/ICM in different types of parthenogenetic and NT blastocysts1
Blastocyst type

(Day 8)
No. of

embryos
Cells/

BL
No. (%) ICM

cells
No. (%)

pycnotic cells
Parthenogenetic 12 133±14a 36±6 (26)a 9±1 (7)a

Embryonic NT 14 142±18a 44±9 (29)a 5±2 (3)a

Somatic NT 12 139±10a 47±8 (33)a 4±2 (3)a

Frozen in vivo 7 145±17a 32±6 (23)a 9±3 (6)a

aValues within columns with the same superscript do not differ, P>0.05.2
Parthenogenetic, blastocysts developed from parthenogenetically activated oocytes;3
Frozen in vivo, blastocysts thawed from cryo-preserved in vivo fertilized embryos;4
NT, nuclear transfer.5

6
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 1

Fig. 1. Parthenogenetic activation and nuclear transfer in cattle.  (A) Bovine oocytes 2

after maturation for 20-22 h in vitro showed the expansion of cumulus cells.  After 3

activation oocytes have undergone development in vitro to compacted morulae (B) at 4

Day 4.5 and expanded blastocysts (C) at Day 8.  (D)The inner cell mass (ICM) and 5

trophectoderm (TE) cells were stained blue and pink, respectively, when a 6

parthenogenetic blastocyst was treated with differential staining (arrows indicating 7

pycnotic inner nuclei shown as blue fragments).  (E-H) Nuclear transfer of embryonic 8

donor nuclei into pre-activated cytoplasts.  Oocytes are enucleated by aspirating the first 9

polar body (arrow) and surrounding cytoplasm containing the metaphase plate (E), then 10

subjected to an activation protocol, followed by insertion of embryonic cells (F) and cell 11

fusion as shown by the arrow in the insert of (F).  Fused embryos developed to hatched 12

blastocysts (G) at Day 8 with a proportional allocation of ICM (blue)/TE (pink) cells (H).  13

(I-L) Nuclear transfer of somatic cells into M II cytoplasts.  Fibroblasts (I) at passage 5-6 14

were transferred into the perivitelline space of oocytes (J), and after optimal activation 15

fused embryos developed to hatched blastocysts (K) in vitro at 8 days of culture.  The 16

resultant blastocysts possessed ICM (blue) and TE (pink) cells (L).  Bar=100 µm. 17
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