

University of Connecticut [OpenCommons@UConn](https://opencommons.uconn.edu?utm_source=opencommons.uconn.edu%2Fchem_educ%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages)

[Chemistry Education Materials](https://opencommons.uconn.edu/chem_educ?utm_source=opencommons.uconn.edu%2Fchem_educ%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages) **[Department of Chemistry](https://opencommons.uconn.edu/chem?utm_source=opencommons.uconn.edu%2Fchem_educ%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages)**

6-14-2006

Carl W. David *University of Connecticut*, Carl.David@uconn.edu

Follow this and additional works at: [https://opencommons.uconn.edu/chem_educ](https://opencommons.uconn.edu/chem_educ?utm_source=opencommons.uconn.edu%2Fchem_educ%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages) Part of the [Science and Mathematics Education Commons](http://network.bepress.com/hgg/discipline/800?utm_source=opencommons.uconn.edu%2Fchem_educ%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

David, Carl W., "Elliptical Coordinates" (2006). *Chemistry Education Materials*. 5. [https://opencommons.uconn.edu/chem_educ/5](https://opencommons.uconn.edu/chem_educ/5?utm_source=opencommons.uconn.edu%2Fchem_educ%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages)

Elliptical Coördinates ellip coord.tex

C. W. David Department of Chemistry University of Connecticut Storrs, Connecticut 06269-3060 (Dated: June 14, 2006)

I. SYNOPSIS

The Cartesian coördinate system and the spherical polar one are familiar to most students, but the elliptical coördinate system is so unfamiliar that a "tutorial" on

If r_A is the distance from nucleus A to a point $P(x,y,z)$ (where the electron is located, in H_2^+ , presumably), and r_B is the distance from nucleus B to the same point(!),

it is appropriate. Since the H_2^+ system, the prototypical molecule (although without electron pair bonding), most easily is treated in this coördinate scheme, chemists have a vested interest in learning how to deal with it.

and subtracting,

$$
r_B = \frac{R}{2}(\lambda - \mu)
$$

This also means that, by elementary geometry,

$$
r_A = \sqrt{x^2 + y^2 + (z - R/2)^2}
$$

and

$$
r_B = \sqrt{x^2 + y^2 + (z + R/2)^2}
$$

We seek the transformation equations between (x, y, z) and z) on the one hand and (λ, μ, ϕ) on the other.

To start, we write

$$
r_A^2 = \left(\frac{R}{2}\right)^2 (\lambda + \mu)^2 = x^2 + y^2 + (z - R/2)^2 = x^2 + y^2 + z^2 - 2zR/2 + \left(\frac{R}{2}\right)^2 \tag{1.1}
$$

i.e.,

$$
r_A^2=r^2-2zR/2+\left(\frac{R}{2}\right)^2
$$

and

$$
r_B^2 = \left(\frac{R}{2}\right)^2 (\lambda - \mu)^2 = x^2 + y^2 + (z + R/2)^2 = x^2 + y^2 + z^2 + 2zR/2 + \left(\frac{R}{2}\right)^2 \tag{1.2}
$$

i.e.,

$$
r_B^2 = r^2 + 2zR/2 + \left(\frac{R}{2}\right)^2
$$

so that (adding Equations 1.1 and 1.2)

$$
r_A^2 + r_B^2 = 2\left(x^2 + y^2 + z^2 + \left(\frac{R}{2}\right)^2\right) = 2\left(\lambda^2 + \mu^2\right)\left(\frac{R}{2}\right)^2 = 2r^2 + 2\left(\frac{R}{2}\right)^2
$$

Typeset by REVT_FX

 $\lambda \equiv \frac{r_A + r_B}{R}$

then Elliptical Coordinates are defined as:

and

$$
\mu \equiv \frac{r_A - r_B}{R}
$$

R

(where ϕ is the same as the coordinate used in Spherical Polar Coordinates), which means that, adding,

$$
r_A = \frac{R}{2}(\lambda + \mu)
$$

FIG. 1: The Elliptical Coordinate System for Diatomic Molecules. The ellipse is the locus of constant λ . The μ coordinate is not depicted. On the right hand side, one sees the depiction of the point $(0,0,R)$ which would make $r_A = R/2$ and $r_B = 3R/2$

so

$$
r^{2} = \left(\lambda^{2} + \mu^{2}\right)\left(\frac{R}{2}\right)^{2} - \left(\frac{R}{2}\right)^{2}
$$

and

$$
r^{2} = \left(\frac{R}{2}\right)^{2} \left(\lambda^{2} + \mu^{2} - 1\right)
$$
 (1.3)

FIG. 2: The Elliptical Coordinate System for Diatomic Molecules. The construction of the triangle defining r_A is shown. A similar triangle based on $z + R/2$ is used to obtain r_B .

We need the z-coordinate first, so, subtracting Equation 1.2 from Equation 1.1 instead of adding, we obtain

$$
(z - R/2)^2 - (z + R/2)^2 = \frac{R^2}{4} ((\lambda + \mu)^2 - (\lambda - \mu)^2) = \left(\frac{R}{2}\right)^2 (\lambda^2 + 2\lambda\mu + \mu^2 - (\lambda^2 - 2\lambda\mu + \mu^2))
$$

i.e.,

$$
-4z\frac{R}{2} = \left(\frac{R}{2}\right)^2 (4\lambda\mu)
$$

or

$$
z = -\frac{R\lambda\mu}{2} \tag{1.4}
$$

This is our first transformation equation. To check that this is correct, we examine the point $(0,0,R)$ which would have $r_A = R/2$ and $r_B = 3R/2$ as shown in the diagram. From Equation 1.4 we have

$$
R = -\frac{R}{2}\lambda\mu = -\frac{R}{2}\frac{1}{R}(R/2 + 3R/2)\frac{1}{R}(R/2 - 3R/2)
$$

which is

$$
R = -\frac{1}{2R}(2R)(-R)
$$

We return now to obtaining x and y in this new coordinate system. Since, in spherical polar coordinates one has

$$
\cos \theta = \frac{z}{r}
$$

it follows that

$$
\sin^2 \theta = 1 - \cos^2 \theta = 1 - \left(\frac{z}{r}\right)^2
$$

i.e,

$$
r\sin\theta = r\sqrt{1 - \left(\frac{z}{r}\right)^2} = \sqrt{r^2 - z^2}
$$

Using Equation 1.4, we have

$$
r\sin\theta=\sqrt{r^2-\left(\frac{R\lambda\mu}{2}\right)^2}
$$

and (using Equation 1.3)

$$
r\sin\theta = \sqrt{\left(\frac{R}{2}\right)^2(\lambda^2 + \mu^2 - 1) - \left(\frac{R\lambda\mu}{2}\right)^2}
$$

$r \sin \theta = \frac{R}{R}$ 2 $\sqrt{(\lambda^2 + \mu^2 - 1 - \lambda \mu)}$

then

$$
x=r\sin\theta\cos\phi
$$

i.e.,

$$
x=\frac{R}{2}\cos\phi\sqrt{(\lambda^2-1)(1-\mu^2)}
$$

and

$$
y = \frac{R}{2}\sin\phi\sqrt{(\lambda^2 - 1)(1 - \mu^2)}
$$

II. SYNOPSIS

For future reference, we collect the transformation equations here:

