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Fast algorithms using minimal data structures

for common topological relationships in large,

irregularly-spaced topographic data sets

Thomas H. Meyer a,∗,

aUniversity of Connecticut

Department of Natural Resources Management and Engineering

Storrs, CT 06269-4087, USA

Abstract

Digital terrain models (DTM) typically contain large numbers of postings, from

hundreds of thousands to billions. Many algorithms that run on DTMs require

topological knowledge of the postings, such as finding nearest neighbors, finding

the posting closest to a chosen location, etc. If the postings are arranged irregu-

larly, topological information is costly to compute and to store. This paper offers a

practical approach to organizing and searching irregularly-space data sets by pre-

senting a collection of efficient algorithms (O(N), O(lg N)) that compute important

topological relationships with only a simple supporting data structure. These rela-

tionships include finding the postings within a window, locating the posting nearest

a point of interest, finding the neighborhood of postings nearest a point of interest,

and ordering the neighborhood counter-clockwise. These algorithms depend only on

two sorted arrays of two-element tuples, holding a planimetric coordinate and an

integer identification number indicating which posting the coordinate belongs to.

There is one array for each planimetric coordinate (eastings and northings). These
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two arrays cost minimal overhead to create and store but permit the data to remain

arranged irregularly.

Key words: Digital terrain model, irregularly-spaced data, topological

relationships, Triangulated Irregular Network, TIN

1 Introduction

Topographic data sets are sets of triplets containing two planimetric coordi-

nates and one vertical coordinate. These coordinates are either measured by

automatic methods such as scanning laser altimeters (LIDAR) (Flood and

Gutelius, 1997; Baltsavias, 1999), interferometric synthetic aperture radar

(IFSAR) (Hodgson et al., 2003; Gamba and Houshmand, 2000; Mercer and

Schnick, 1999), or by manual compilation with methods like photogrammetry

and ground surveying. The terrain samples are called postings. Automatic

terrain sampling methods produce irregularly-spaced samples either by design

or simply due to uncontrollable environmental factors such as wind turbu-

lence jostling the aircraft carrying an instrument. Samples collected by man-

ual methods are frequently arranged irregularly by choice in order to capture

breaklines and other important features that define the shape of the topog-

raphy; irregularly-spaced postings capture the shape of the terrain and the

features thereon better than gridded postings (Makarovic, 1977; Gould, 1981;

Douglas, 1986). Additionally, some applications require irregularly spaced

data. For example the U.S. National Geodetic Survey maintains a database

of high-accuracy survey control markers and provides web-based applications

∗ Corresponding author. Tel: +1-860-486-0145. Fax: +1-860-486-5408.

Email address: thomas.meyer@uconn.edu (Thomas H. Meyer).
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that allow a user to query the database to find all markers within a certain

distance of a point of interest. The published coordinates of these markers

must not be changed by their representation in the database; they must re-

main irregularly spaced. Also, gridding the data can impede feature detec-

tion (Cooper and Cowan, 2004). Digital terrain models employing irregularly

spaced postings are common and useful; the Triangulated Irregular Network

(TIN) is probably the most common example of the type.

Many terrain analysis algorithms depend on topological relationships between

the postings. In particular, many algorithms require neighborhoods of post-

ings that are close to one another in some sense. For example, the computation

of gradients (Meyer et al., 2001), curvature (Shary, 1995; Ozkaya, 2002), semi-

variograms (Isaaks and Srivastava, 1989), kriging (Hessami et al., 2001), rough-

ness metrics (Philip and Watson, 1986), cluster analysis (Gebhardt, 2001), fea-

ture recognition (Cooper and Cowan, 2004), and fractal dimensions (DeCola,

1989; Cheng, 1999) are defined over neighborhoods. For gridded data, two typ-

ical neighborhoods are the four cardinal postings around the point of interest

or the cardinal postings plus the diagonals. For irregularly spaced data, the

situation is less clear. One popular way to determine sets of nearest neighbors

for irregularly spaced data is to construct the Delaunay tessellation of the

postings. Then, for some posting p, take the nearest neighbors of p to be those

postings that share an edge in the tessellation with p. This solution is elegant

and satisfies the goal of “letting the data speak for themselves” (Gould, 1981),

but a Delaunay tessellation requires considerable time to compute and space

to store. These problems can be intractable given the size of many topographic

data sets. For example, as of the time this article was written, at least one

commercial LIDAR sensor can collect samples at 70,000 Hz with sub-meter
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posting spacing (Optech, 2003). At this rate, a one-hour flight of this sensor

would collect more than 2.5×108 samples.

The time needed to compute the inherent topology of data sets as large as

these would be prohibitive to most users. Therefore, large topographic data

sets are usually gridded and the resulting loss of accuracy is simply accepted.

This paper offers an alternative, a way to have the accuracy of irregularly

spaced data without unacceptable computational and storage burdens of com-

plicated data structures such as Delaunay tessellations (Mortenson, 1985, p.

317), quadtrees (Samet, 1990; de Berg et al., 1998), k-d-B-Trees (Bentley,

1975; Robinson, 1981), hB-Trees (Lomet and Salzberg, 1989, 1990) or R-Trees

(Guttman, 1984); see Nievergelt and Widmayer (1991) for a survey. This pa-

per presents several simple and efficient algorithms that compute the basic

topological relationships needed for algorithms requiring neighborhoods for

inputs. These algorithms depend only on two simple data structures, namely,

two sorted arrays.

2 Supporting Data Structure

The following discussion depends on sets and the elements thereof. The ith

element of a set P is denoted Pi. Conversely, we denote that element itself

with pi. Thus, Pi = pi.

An individual postings is typically a set of values including three spatial coordi-

nates plus other ancillary information such as an intensity value, a time stamp,

a return number, etc. Define a posting to be a set pi = {ei, ni, ui, αi, βi, . . .},

where ei, ni, ui ∈ R are the posting’s easting, northing, and height (up) coor-
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dinates, respectively, R denotes the set of reals, and αi, etc. are additional

attribution fields holding ancillary information of no particular type. Let

pi
e, p

i
n, p

i
u denote the easting, northing, and up coordinate of posting pi and

P = {p1, . . . , pN} denote the given posting data set. Thus, Pi,e is the easting

of pi. Define the index set over P to be I = {1, . . . , N}.

Our strategy is to decompose P into three arrays. One of the arrays, N , is

a sorted array of northings together with an index indicating which posting

that northing came from. E is a sorted array of eastings together with an

index into N indicating which northing that easting was paired with. The

last array, P contains the attribution fields of P plus an index into E thus

forming an index loop: knowing an easting leads to the northing associated

with that easting; knowing a northing leads to the attribution information and

a pointer to the associated easting; and knowing a posting leads to its easting.

Therefore, given any tuple in any of E ,N ,P allows the entire original posting

to be reconstructed. For notation, let Ni = {ni, ηi}, meaning Ni is the ith

tuple of the sorted northing array, ni is the northing coordinate and ηi is the

index of the posting having this northing. Similarly, let Ei = {ei, ǫi}, meaning

Ei is the ith tuple of the sorted easting array, ei is the easting coordinate and

ǫi is the index into N of the northing associated with this easting. Finally, let

Pi = {πi, αi, βi, . . .}, meaning Pi holds the attribution information of the ith

posting and πi is an index into E indicating that Eπi,e is the easting of posting

i. For example, suppose the original posting set consisted only of eastings,

northings, and elevations (no additional attribution fields):

P = {{170, 430, 10}, {100, 400, 0}, {130, 440, 20}, {120, 410, 50}}. This posting

set is split into three pieces,

N={ {400,2},{410,4},{430,1},{440,3} },
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Fig. 1. 7000 random postings from the 3 627 915 posting data set used to test these

algorithms. The sinuous dropout on the right is from a waterway.

Fig. 2. Two detailed views of posting spacings. The left image shows the ends

of several scan lines that overlay other scans roughly at their nadir point (the

heavy dot in the center). The highly heterogeneous pattern is due to overlapping

nominally-orthogonal scan lines, topographic variability, and land cover preventing

some laser beams from reaching the ground. The right image has no overlap and is

typical of spacings near the nadir.

E = { {100,1},{120,2},{130,4},{170,3} }, and

P={ {4,10},{1,0},{3,20},{2,50} }.
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2.1 Expectations of Redundancy

In 2005, the University of Connecticut obtained a multi-return LIDAR data

set covering part of the Connecticut coast on Long Island Sound. A subset

containing 3 627 915 postings was extracted to test these algorithms. 7000

random postings from this data set are shown in Fig. 1, which gives a general

impression of the arrangement of the 3.6 million postings. Fig. 2 shows two

detailed subsets, to illustrate the posting spacing variety.

The algorithms in this paper were implemented in Mathematica v5.1 running

on a Dell Optiplex GX260, 2.40 GHz CPU with 512MB RAM and the data

structures were constructed using external storage. Many of the algorithms

that follow have a linear time complexity component so it is useful to note

that scanning the data required 27.9 minutes, for the average single-posting

retrieval speed is about 460 µs. This is the concrete upper bound for a linear

complexity algorithm.

Examining this data set revealed that many postings have identical eastings

and/or northings. This appears to have happened because this LIDAR uses

a “whisk broom” beam steering mechanisms that sweeps the laser perpen-

dicularly across the flight line and most whisk broom sensors slow down at

the end of the sweep causing postings to “pile up” at the ends (Fig. 2). Of

the 3 627 915 postings, only 183 306 have distinct eastings and 127 384 have

distinct northings, with as many as 97 postings sharing a common northing

coordinate. This redundancy occurred in spite of the coordinates, given in ge-

ographic decimal degrees, being reported to seven significant decimal digits.

Furthermore, 8571 coordinate pairs (0.26%) were not unique. In fact, there
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are six cases in which nine postings all have the same easting-northing pair.

Therefore, we assume that E and N contain tuples with replicated planimetric

coordinates but different indices. For example, suppose the original posting set

was (note duplicated coordinates)

P = {{130, 430, 10}, {160, 400, 0}, {130, 400, 20}, {100, 490, 50}}. This posting

set is split into

N={ {400,2},{400,3},{430,1},{490,4} },

E = { {100,4},{130,3},{130,2},{160,1} }, and

P={ {2,10},{4,0},{3,20},{1,50} }.

3 Fundamental Topological Relationships

In what follows we assume the availability of a binary search algorithm (Cor-

men et al., 1997) that will be used to search over the sorted coordinates in

E and N . We name this algorithm, “BinarySearch.” We assume it takes two

operands. The first is the name of the sorted array over which to search, either

E or N . The second operand is a value t to search for among the planimetric

coordinates. BinarySearch returns the index associated with the two-tuple of

either E or N whose planimetric coordinate is closest to t. We note that this

algorithm must be able to return a list of indices, not just a single value. This

is true because, as was noted above, it’s possible that the closest coordinate

value could belong to more than one point. Furthermore, t could fall exactly

between a set of points, such as finding a perpendicular bisector or a point in

the center of a grid cell.

We now present algorithms for computing various topological relationships

given E , N and BinarySearch.
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3.1 Bounding Rectangle and Geometric Center

The bounding rectangle is simply (First[E ], First[N ]), (Last[E ], Last[N ]), where

First and Last are functions that extract the first and last coordinate from

their argument, respectively. The geometric center is the average of the bound-

ing rectangle coordinates.

3.2 Square Window

The following is an algorithm to return the set of indices I¤ ⊆ I into P of

postings P¤ ⊆ P that are inside a square window having sides of length 2r

and centered at p = {e, n}. p may or may not be in P . The algorithm depends

on the following claim.

Let ǫ+ be the largest index into E such that Eǫ+ has the largest easting less

than or equal to e+ r. Symmetrically, let ǫ− be the smallest index into E such

that Eǫ− has the smallest easting greater than or equal to e− r. Define η+ and

η− similarly on N . Let E[ǫ−,ǫ+] denote the set of elements of E in the range

[ǫ−, ǫ+], inclusive, and ǫ to be the set of indices of E[ǫ−,ǫ+] into N . Then the

required set of indices is equal to

I¤ = ǫ
⋂

[η−, η+].

A set of irregularly spaced postings, indicated with open circles, is depicted in

Figure 3 with the point of interest p shown as a solid circle. E[ǫ−,ǫ+] is the index

set of those circles in the darkened vertical region. [η−, η+] is the index set of

those circles in the darkened horizontal region. The white intersection of the

two is the set of postings common to both sets, those points in the required

9



2r

p 2r

Fig. 3. Postings within a square window with size 2r centered at p, shown as a solid

black circle. The darkened vertical region contains those postings in E[ǫ−,ǫ+] and the

darkened horizontal region contains those postings in [η−, η+]. The intersection of

the two are the three postings satisfying both conditions and are, therefore, those

postings in the required window.

window.

The algorithm to compute I¤ is as follows. Find the two indices into E ,

ǫ− and ǫ+, for the lower/upper easting bounds. All postings with easting

index between these bounds have eastings within the required range. Find the

two indices into N , η− and η+, for the lower/upper northing bounds. Recall

that Ei,ǫ is an index into N and that, because N is sorted, any index into

N between η−, η+ must be a northing that falls within the required northing

range. Therefore, perform the intersection by scanning the northing indices

in E for those between η−, η+. The indices of the postings I¤ are then found

from N .
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Fig. 4. (a) Time to find all postings falling within square windows ranging in size

from 80,000 to 3.4 million postings. (b) Retrieval efficiency (postings per second)

for windows of various sizes.

For a dataset with N postings, the computational complexity of I¤ is O(N)

because, if the window were to encompass the entire data set, all postings

would have to be examined. However, the intersection can be performed by a

linear scan of only E because knowing η− and η+ allows each candidate from

[η−, η+] to be considered without actually scanning N . Fig. 4 presents two

graphs showing the running time of our implementation. The linear complex-

ity is evident in Fig. 4(a) but notice that the maximum running time was

around 10 minutes, which is more than twice as fast as a linear scan of the

postings. Fig. 4(b) shows the efficiency of the algorithm in terms of postings

retrieved per second. Interestingly, the efficiency is better than constant; it

increases with window size. This is simply explained by the fact that more

postings satisfying the individual easting / northing range end up in the an-

swer whereas, with a smaller window, many more postings are examined to

be discarded.

This algorithm can be generalized to windows such as circles, rectangles, or

polygons simply by finding the bounding square of the generalized window,

executing the given algorithm on that square, and passing the results through
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Fig. 5. A sample posting set to illustrate the nearest-posting algorithm. Postings

are denoted with open circles. The point of interest p is the solid circle near the

middle. E is shown as the horizontal shaded area. N is shown as the vertical shaded

area. Note that posting 6 is closest to p but the eastings and northings closest to

those of p belong to points on the data set’s convex hull, at extreme distances from p.

a filter to remove those postings outside the generalized window.

3.3 Postings Nearest a Point of Interest

Suppose it is required to find a posting that is spatially closest to some point

of interest p = {e, n}, and p is typically not in P . There is usually only one

posting nearest p but, as stated above, that need not be the case. The following

is an algorithm to return the set IN ⊆ I of indices into P of postings PN ⊆ P
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nearest to a point of interest p. Logically, we define IN to be the set of indices

for those postings whose distance from the point of interest is less than that

for all other points in P . Conceptually, one could sort the points by distance to

p and simply take the shortest one, or all points sharing the shortest distance.

The algorithm works using the common sense notion that the posting closest

to p must have its entries in E and N close to those found by searching for

p. It is possible that the search will find the closest point directly but this

need not be true. See Figure 5. The solid circle in the center represents p’s

location. The gray regions are E and N . Posting 6 is closest to p but there

are two or three entries in N and E respectively that are closer. In fact, it is

possible for the location of one of the closest posting’s coordinates in N and

E to be arbitrarily far away from the coordinate found with the binary search.

As suggested by the figure, there could be a cascade of other postings whose

easting, say, were closer. However, if one coordinate is far away, the other

cannot be. This is guaranteed by the triangle inequality. Therefore, searching

E and N in all four directions simultaneously is guaranteed to find the closest

posting quickly. The algorithm is organized as follows.

First: Find the index sets E◦ ⊆ I and N ◦ ⊆ I of the postings whose easting

and northing coordinates are closest to e and n by performing a binary search

of E and N . That is, E◦ = BinarySearch(E , e)ǫ and N◦ = BinarySearch(N , n)η.

Let ι◦ = E◦
⋂N ◦.

Claim: ι◦ 6= ∅ ⇒ ι◦ is the set of the indices of the closest postings.

Proof: First, suppose ι◦ 6= ∅. Claim: the posting(s) in ι◦ are the closest. There

is no posting whose easting is closer to e than those in E◦. Likewise, there is no

posting whose northing is closer to n than those in N ◦. Then Pι◦ = PE◦

⋂

PN ◦
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is not empty by assumption and is exactly the set of postings closest to p

because there are no postings whose easting is closer to e than those in PE◦

and there are no postings whose northing is closer to n than those in PN ◦ .

Thus, Pι◦ contains all the closest postings and every posting in Pι◦ belongs

there. ¥

The algorithm works as follows:

If the intersection is not empty, the search is completed.

Now suppose that ι◦ = ∅. Let pi and pj be the postings whose easting and

northing coordinates are closest to those of p, respectively. The lesser of the two

distances |pi −p| and |pj −p| is an upper bound d̄ on how far the closest point

p∗ = {e∗, n∗} can be from p. This implies that |e−e∗| ≤ d̄ and also |n−n∗| ≤ d̄

(triangle inequality). We now show how to efficiently find p∗ using E and N .

The efficiency comes from noting that there must be a (always proper) subset

of E and N in which p∗ must reside, and this subset is usually far smaller than

P . Therefore we will search E and N to find p∗ using d̄ as an initial bound

on the search. Recall that E◦ is a set of indices of postings whose easting is

closest to p’s easting; similar for N ◦. Both E◦ and N ◦ will usually actually

have only one element but there could be more if more than one posting’s

easting/northing coordinate were identical and also closest to p. Define ǫ◦ to

be any index from E◦ and η◦ to be any index from N ◦. The postings associated

with ǫ◦ and η◦ are not closest because, by assumption, the intersection of E◦

and N ◦ was empty. Therefore, begin the search simultaneously at two locations

in E and N each, namely ǫ◦±1 and η◦±1. The postings associated with these

four elements of E and N may be nearer or farther from p∗ than the original

points were from p∗. However, if any of the four are closer, denote the closest

14



by p̂∗ and that distance by d̂∗ which becomes a new, better upper bound on

the search. This reduces the range of E and N that must be searched because

we need look no further away from ǫ◦ or η◦ than d̂∗. The search continues

looking at elements of E and N incrementally further from ǫ◦ and η◦ until the

coordinates are farther from ǫ◦ or η◦ than d̂∗, after which the search terminates.

The critical observation is that a posting with a coordinate that is itself further

from p than d̂∗ cannot possibly be the closest posting because that coordinate

by itself is already too far away. Furthermore, since E and N are sorted by

coordinates, we know we can stop the search because all subsequent postings

must be further away than d̂∗ for the same reason. At this point we know

d̂∗ = d̄. Note that each iteration in any of the four directions can potentially

reduce the block size for all the searches. Thus, at each step, more information

can be gained to shrink the search space. The pseudo-code for this algorithm

is as follows.

IN(p){

N = number of postings;

ǫ◦ := BinarySearch[E , e]ǫ; η◦ := BinarySearch[N , n]η;

ι◦ := Eǫ◦,ǫ

⋂Nη◦,η;

if ι◦ 6= ∅

IN := ι◦;

else

d̄ := ∞;

ǫ− := ǫ◦ − 1; η− := η◦ − 1; ǫ+ := ǫ◦ + 1; η+ := η◦ + 1;

de− := e − Eǫ−,e; de+ := Eǫ+,e − e; dn− := n −Nη−,n; dn+ := Nη+,n − n;

while (d̄ ≥ min(de−, de+, dn−, dn+))

if (d̄ ≥ de−)

15
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Fig. 6. (a) Execution time needed to find the posting nearest a random point. The

running time is logarithmic but with great variability. (b) The average number of

iterations required for a given data set size.
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Fig. 7. Typical histogram of the iterations required to find the nearest posting.

Distribution appears lognormal. The large variability indicated in Fig. 6 is due

mainly to several very large, but infrequent occurrences.

d̄ := de−; IN := Eǫ−,ǫ; if (ǫ− > 0){ǫ− = ǫ− − 1; de− := e − Eǫ−,e; }

if (d̄ ≥ de+)

d̄ := de+; IN := Eǫ+,ǫ; if (ǫ+ < N − 1){ǫ+ = ǫ+ + 1; de+ := Eǫ+,e − e; }

if (d̄ ≥ dn−)

d̄ := dn−; IN := Nη−,η; if (η− > 0){η− = η− − 1; dn− := n −Nη−,n; }

if (d̄ ≥ dn+)

d̄ := dn+; IN := Nη+,η; if (η+ < N − 1){η+ = η+ + 1; dn+ := Nη+,n − n; }
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As an example, again consider Figure 5. The circular arc section shows that

posting 6 is closest to p. At the first step of the iteration, d̄ is the distance

from posting 1 to p. ǫ◦ = 5 because posting 1’s easting was closest to p and

e1 is the fifth element of E . η◦ = 2. Therefore, start searching E at 4 and 6;

start searching N at 1 and 3. Of these three postings (4, 7, 3 with 3 occurring

twice), posting 4 is the closest. Therefore, d̂∗ is set to the distance from posting

4 to p. The next iteration proceeds only increasing for N and decreasing for E ,

having come to the end in the other directions. This iteration finds postings

6 and 5. Posting 6 is closer than 4 thus reducing d̂∗. At the next iteration, all

points are further than d̂∗ in just their distance to p in easting or northing

alone, and the algorithm terminates.

The computational complexity of this algorithm is O(max(lg N, N′)), where N

is the number of postings and N′ is the length of the larger block to search

over. Although N′ can be zero because the nearest point can be found with-

out searching E or N at all, this happened extremely rarely in our testing

(0.0028%). As shown in Figs 6 and 7, N′ is usually small (N′ ≪ N) but will

increase as N increases, assuming posting density is constant. In fact, in the

worst case, it is possible that N′ = N. More formally, suppose the postings

define a square region of side length h, with statistically uniformly distributed

posting density ρ, and average separation distance d. Then, the point closest

to a point of interest will typically be not farther than d from the point of

interest. Define two strips, one horizontal and one vertical, of width 2d. The

area of each strip is 2dh for a total area of 4dh ignoring the overlapping area.

The expected number of postings in the strips is N′ = 4ρ d h. The total number

of postings is N = ρh2. The ratio of the number of postings in the strips to the

total number of postings is 4ρ d h/ρh2 = 4d/h. LIDAR postings are typically
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very dense so d ≪ h and therefore N′ ≪ N. Fig. 6 shows elapsed execution

times for topographic data sets larger than 3.5 million postings. The graph

shows the logarithmic increase with N, as expected. The large variability can

be explained by Fig. 7, which illustrates that most of the iterations are fairly

consistent but there are occasional very large occurrences, thus creating the

large variance estimates.

3.4 Nearest Neighbors

Nearest neighbors are a set of some size of those points closest some point of

interest. There are different ideas about what constitutes the nearest neighbors

of a point of interest p. Alternatives include all postings inside a window of

some size centered at p (Isaaks and Srivastava, 1989) or the nearest neighbors

in the Delaunay sense (Gold, 1989). We also note that there is more than one

way to triangulate any set of postings (e.g., see Abdelguerfi et al. (1998) or

(Wang et al., 2001)) so the Delaunay definition cannot be universally agreed

on. Therefore, because there is no consensus about the definition of nearest

neighbors, we will define the nearest neighbors of order h to be the set Hh

having at least h postings such that there are no other postings in P −Hh that

are closer to p than those in Hh. We stipulate that Hh has at least h postings

so as to include multiple postings equidistant from p. For example, suppose

p happened to be in the center of a circle of postings and that there were no

other postings within the circle. Then, H1 would include all the postings on

the circle. From this definition, one can observe that h is more like a ranking

than the size of H.

Finding nearest neighbors is a straightforward generalization of the IN algo-
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Fig. 8. Execution time needed to find the four postings nearest a random point. The

ordinate is the number of postings in the DEM.

rithm. First, note that IN is the set of indices of nearest neighbors of order 1

for p, that is, H1(p) = IN(p). The IN algorithm kept track of only the closest

posting. However, if the algorithm is augmented to keep track of the h clos-

est postings, then the result will be the nearest neighbors. The details of the

program become somewhat tedious and are omitted for brevity.

The execution time of the algorithm is graphed in Fig. 8, in which neigh-

borhoods of four postings around 20 random points of interest in DEMs of

increasing size were found. In comparing Fig. 8 with Fig. 6 one sees the same

logarithmic computational complexity but the time for finding four nearest

points is roughly twice as long as finding only the first closest point.

3.5 SortCCW

It is often useful to order nearest neighbors’ postings radially around the point

of interest. The following is an algorithm that will order the postings counter-

clockwise around p but without computing any trigonometric or transcenden-

tal functions. Let PN be the postings to order around p. Let vN be the set of

19



vectors from p to the postings in PN , i.e.,vi = pi − p. Now, note that within a

quadrant, cos θ is a strictly increasing function of θ so ordering by cos θ pro-

duces the same result as ordering by θ itself. Furthermore, cos θi = vi
n/v

i
e so

it suffices to sort by vi
n/v

i
e thus eliminating the need to compute the arccosine

explicitly. It remains to disambiguate by quadrant. We define a function, q(v),

to do this.

q(v) =















































































1, if e ≥ 0 ∧ n ≥ 0;

2, if e < 0 ∧ n > 0;

3, if e ≤ 0 ∧ n ≤ 0;

4, if e > 0 ∧ n < 0.

Then, form S = {{q(v1), v1
n/v1

e}, . . . , {q(vN), vN
n /vN

e }} and sort S first by

quadrant and then by vi
n/v

i
e within quadrant. If vi

e = 0, use ∞ for vi
n/v

i
e.

4 Discussion

Storage costs are a major concern in digital terrain modeling. Irregularly-

spaced postings must have their coordinates stored explicitly although there

are efficient methods to do this (Meyer, 2002). Spatial data structures, how-

ever, will typically require more storage space than the topographic data set

itself. The approach given in this article requires external storage O(N), where

N is the number of postings, whereas quadtrees, k-d-B-trees, hB-trees and

R-trees require storage O(N log N). These access method partition space hi-

erarchically into regions that may or may not overlap. Queries are answered
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by traversing the tree to identify regions satisfying the query criteria; the hi-

erarchy enabling logarithmic search complexity. Range searching views spatial

queries to be predications of the points in the intersection of sets of half-spaces

(Arge et al., 1999), a perspective that arose from constraint database theory.

Range searching is supported by sorted arrays (Arge et al., 1999) in conjunc-

tion with weighted B-trees (Arge and Vitter, 1996), priority search trees (Mc-

Creight, 1985) or p-range trees (Subramanian and Ramaswamy, 1995) and,

consequently, require storage O(N log N). A Delaunay triangulation, repre-

sented as a list of nearest-neighbor lists, is also linear. However, an efficient

implementation requires a hash table or associative array to store the variable

length nearest-neighbor lists, which on average, have six edges between post-

ings for every posting in the topographic data set. In contrast, the method

in this paper adds exactly three indices per posting and incurs no overhead

for a hash table or associative array. The storage overhead for this method

is low. However, the aforementioned tree-based methods readily support up-

dates, which the proposed method does not. This decision is acceptable in

practice because large topographic data sets tend to be static. Once a data

vendor has created and edited a data set, insertions and deletions seldom oc-

cur. This is typically true for data, as well. Subsets of a dataset might be

extracted for specific purposes but data are typically not added or deleted

from the original dataset piecemeal.

Constructing an access method can, itself, be prohibitively time-consuming.

Our method requires three sortings of the data and is, therefore, O(N log N).

Algorithms of this complexity exist for the other spatial access methods (De-

launay triangulations, R-trees, etc.), too. However, our data structure is very

simple and the constant of proportionality for its construction is small. For
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a specific example, constructing a Delaunay triangulation of only 50 000 in-

memory postings in Mathematica v 5.1 took more than 95 minutes. Our imple-

mentation, using Unix operating system sorting and cutting operations, builds

the data structures in less than 12 minutes for a 3.6 million posting data set.

Although there are obvious “apples to oranges” comparison problems, the ex-

ample illustrates that the more complicated algorithms can run prohibitively

slowly. This was a primary motivation for the current investigation, in fact.

Finding the posting nearest some point of interest requires time O(
√

N) for a

Delaunay triangulation and O(log N) for tree-based methods; the algorithm

in this paper is O(max lg N,N ′), where N ′ is the number of postings whose

individual easting or northing coordinate is closer to the respective coordinate

of the point of interest than the corresponding coordinate of the closest post-

ing. Finding the nearest neighbors of some point of interest requires constant

time for a Delaunay triangulation and O(log N) for tree-based methods; the

algorithm in this paper is comparable. Thus, the data structures presented in

this paper require potentially far less external storage than the alternatives

and are computed very quickly, and the searching algorithms generally either

run faster or comparably. These characteristics suggest this approach to be

well-suited for large sets of topographic postings while maintaining the ad-

vantages of irregular spacing. Although these algorithms were written with an

eye towards digital terrain modeling, they can be generalized to higher dimen-

sional datasets by adding more sorted arrays equivalent to E and N for the

higher dimensions.
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