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SYNOPSIS 

The report presents a constitutive model for simulating the high strain-rate 

behavior of sands.  Based on the concepts of critical-state soil mechanics, the bounding 

surface plasticity theory and the overstress theory of viscoplasticity, the constitutive 

model simulates the high strain-rate behavior of sands under uniaxial, triaxial and multi-

axial loading conditions.  The model parameters are determined for Ottawa and 

Fontainebleau sands, and the performance of the model under extreme transient loading 

conditions is demonstrated through simulations of split Hopkinson pressure bar tests up 

to a strain rate of 2000/sec.  The constitutive model is implemented in a finite element 

analysis software to analyze underground tunnels in sand subjected to internal blast loads.  

Parametric studies are conducted to examine the effect of relative density and type of 

sand and of the depth of tunnel on the variation of stresses and deformations in the soil 

adjacent to the tunnels. 

 

KEYWORDS: constitutive model, sand, high strain rate, tunnel, finite element analysis, 

blast 
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INTRODUCTION 

The development of sustainable and resilient civil infrastructure requires that 

structures can not only withstand anticipated design loads but also encounter extreme and 

unanticipated loads with minimal endangerment of individuals and properties.  Extreme 

loading can be caused by nature in the form of tornados, tsunamis or earthquakes or by 

human activities such as bomb blasts, collisions or industrial accidents.  A common 

feature of these extreme loading scenarios is that they can create very large strains in the 

surrounding material in a very short period of time.  Because so many structures interact 

with soil, it is necessary to be able to model the effect of these extreme, high-rate loads 

on soil. 

High strain-rate behavior of soil has been studied in the laboratory under triaxial 

and uniaxial conditions using various testing apparatus (Cassagrande and Shannon 1948, 

Jackson et al. 1980).  The principal observation of the effect of strain rate on sand is that 

the faster the strain rate is the greater the stiffness and strength are.  The increase in 

strength is manifested through an increase in the peak stress and initial stiffness (Lee et 

al. 1969).  The peak stress also occurs at lesser values of strain as the applied strain rate 

increases.  The effect of increased strength and stiffness is more pronounced in samples 

with greater relative density and confining stress (Lee et al. 1969, Seed and Lundgren 

1954, Whitman and Healy 1962, Yamamuro and Abrantes 2003).  In addition to triaxial 

compression and uniaxial strain tests, projectile methods such as the split Hopkinson 

pressure bar (SHPB) test (Felice 1985, Veyera and Ross 1995, Song et al. 2009, Martin et 

al. 2009) have also been used to understand sand behavior under very high strain rate of 

the order 1000 per second. 
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A limited number of soil constitutive models have been developed to numerically 

simulate the high strain-rate behavior of soil.  These include the three-phase equation-of-

state (EOS) models of Wang et al. (2004), Laine and Sandvik (2001) and Tong and Tuan 

(2007).  The EOS soil models take into account the different speeds of shock wave in the 

solid, water and air phases of soil.  In order to model the solid phase, Tong and Tuan 

(2007) incorporated Perzyna’s viscoplastic flow rule in the Drucker-Prager failure 

criterion.  The model by Wang et al. (2004) also features the Drucker-Prager yield 

criterion for the solid phase along with the capability of incorporating filament based 

damage. 

Studies on the analysis of boundary value problems related to the high strain-rate 

behavior of soil are rather limited in number.  An et al. (2011) used the constitutive of 

Tong and Tuan (2007) for finite element (FE) analysis of blast due to explosives 

embedded in soil.  Nagy et al. (2010) incorporated the Drucker-Prager model in a FE 

framework and simulated wave propagation through soil due to explosions on the ground 

surface.  Yang et al. (2010) incorporated the soil plasticity model of Krieg (1972) in a FE 

framework and simulated the propagation of blast wave in soil.  Lu et al. (2005) 

performed a coupled three phase analysis using the FE method to simulate blasts 

propagating through soil ⎯ they used a modified Drucker-Prager model with a yield 

surface that expands with strain rate and coupled it with a rheological damage model.  

Bessette (2008) used a three phase soil constitutive model with the FE method to simulate 

the propagation of blast waves due to the explosion of buried C4.  Feldgun et al. (2008a, 

b) and Karinski et al. (2008) used the variational difference method to analyze 

underground tunnels and cavities subjected to blast loads. 
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In this report, a constitutive model is presented that simulates the mechanical 

behavior of sand subjected to strains applied with a rate of up to 2000/sec.  Based on the 

concepts of critical-state soil mechanics, the bounding surface plasticity theory and the 

overstress theory of viscoplasticity, the model simulates the high strain-rate behavior of 

sand under multi-axial loading conditions.  The model is based on the rate-independent 

plasticity model developed by Manzari and Dafalias (1997) and modified by Li and 

Dafalias (2000), Dafalias et al. (2004) and Loukidis and Salgado (2009).  The model 

parameters are determined for Ottawa and Fontainebleau sands by comparing the 

simulation results with the experimental data available in the literature.  The constitutive 

model is subsequently used to study the response of tunnels embedded in sandy soil and 

subjected to internal blast loads.  The FE software Abaqus (version 6.9) is used for the 

analyses.  The explosive C4 is simulated with the JWL equation-of-state.  Parametric 

studies are performed to examine the effect of relative density and type of sand and of the 

depth of tunnel on the variation of stresses and deformations in the soil adjacent to the 

tunnels. 

DEVELOPMENT OF THE CONSTITUTIVE MODEL 

Critical State Line 

In this constitutive model, the critical-state line in the e-p' (e is the void ratio and 

p' is the effective mean stress given by p' = (σ'11 + σ'22 + σ'33)/3 where σ'ij is the effective 

Cauchy stress tensor) space is given by (Loukidis 2006)  

c
a

pe
p

ζ

λ
⎛ ⎞′

= Γ− ⎜ ⎟
⎝ ⎠

   (1) 
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where ec is the void ratio at the critical state (Figure 1) and pa is the atmospheric pressure.  

The parameter Γ is the intercept of the critical-state line on the e axis at zero pressure, 

and λ and ζ are fitting parameters.  When a sand sample with a void ratio e less than its 

value ec at the critical state (for the same mean stress p') is sheared, the sample dilates 

causing an increase in e or p' until the critical-state line is reached.  Conversely samples 

with e > ec contract with decreasing values of e or p until the critical-state line is reached.  

This behavior is captured through the use of a state parameter ( )ce eψ = −  ⎯ the 

(positive or negative) sign associated with ψ  governs whether the shear induced 

volumetric strain is contractive or dilative (Been and Jefferies 1985). 

 

Figure 1. Critical-state line and state parameter 

ψ

( / )c ae p p ζλ ′= Γ −

Void Ratio, e

Critical State LineΓ

Current 
Stress State

Mean Stress, p‘
(log scale)

0
1
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Model Surfaces in Stress-Space 

Figure 2 shows the constitutive model surfaces in the principal stress space σ'1-

σ'2-σ'3.  The model contains four conical shear surfaces ⎯ the yield, bounding, dilatancy 

and critical-state (CS) surfaces ⎯ with straight edges in the meridional plane and apex at 

the origin.  The model formulation is done in terms of stress ratios, i.e., stresses 

normalized with respect p'.  The distance of the stress state from the yield surface is 

described by the yield function f, with the yield surface given by f = 0.  The yield 

function in this model is expressed in terms of the deviatoric stress ratio tensor rij as  

( )( ) 2 3ij ij ij ijf  r r p' – mp' α α= − −   
(2) 

 

Figure 2. Model surfaces in three dimensional stress space 

 

Yield Surface

Hydrostatic Stress Axis

Bounding Surface

Dilatancy Surface
Critical State Surface

1σ ′

2σ ′

3σ ′
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where m is a model parameter, αij is the kinematic hardening tensor and rij = sij/p' in 

which sij (= σ'ij − δijσ'kk/3) is the deviatoric stress tensor (δij denotes the Kronecker’s 

delta).  The parameters m and αij have physical meaning in the principal deviatoric stress 

space s1-s2-s3.  The yield surface is a circle in the π-plane of the s1-s2-s3 space with the 

radius equal to 2m/3 and the center located at the apex of the “vector” αij (Higgins 2011).  

The yield surface cannot harden isotropically (i.e., m is a constant) but can harden 

kinematically through the evolution of αij given by 

( ) ( )2 2
3 3

P
ij b ij ij b ij ij

K M m n M m n
p

α λ α α
⎛ ⎞ ⎛ ⎞

= − − − −⎜ ⎟ ⎜ ⎟′ ⎝ ⎠ ⎝ ⎠
  (3) 

where λ  is the viscoplastic multiplier, KP is the viscoplastic modulus, nij 

( ) ( )( )/ij ij kl kl kl kls p s p s pα α α⎡ ⎤′ ′ ′= − − −⎣ ⎦  
determines the direction of the projection of 

the current stress state on the critical-state, dilatancy and bounding surfaces (i.e., nij gives 

the mapping rule) and Mb is the bounding surface stress ratio in the principal deviatoric 

stress space given by 

s
s

s

s
s

s

1/
1
1/

( ) ( )1

1/
1
1/
1

11
1

( )
11 cos3
1

b b

nn

n
k k

b cc ccnn

n

c
c

M g M e M e
c
c

ψ ψθ

θ

− −

⎡ ⎤⎛ ⎞−⎢ ⎥−⎜ ⎟+⎢ ⎥⎝ ⎠= = ⎢ ⎥⎛ ⎞−⎢ ⎥−⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦

  (4) 

where kb is a fitting parameter, Mcc is the deviatoric stress ratio q/p' at the critical state 

under triaxial compression (the deviatoric stress 

2 2 2
1 2 1 3 2 3( ) ( ) ( ) 2q σ σ σ σ σ σ= − + − + −  which simplifies to 1 3q σ σ= −  for triaxial 

compression test), g(θ) is a function of the Lode’s angle θ and determines the shape of 

the critical-state surface in the deviatoric stress space, sn  is an input parameter and 
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controls the convex shape of the critical-state surface (Loukidis 2006) and C1 is the ratio 

of the critical-state stress ratios in triaxial extension and triaxial compression, given by  

1
ce

cc

MC
M

=
  

(5)
 

where Mce is the deviatoric stress ratio at the critical state under triaxial extension.   

Similar to the bounding surface, the dilatancy surface is also a function of Mcc and 

ψ, and is described by 

( ) dk
d ccM g M e ψθ=    (6) 

where kd is a fitting parameter.  The critical-state surface is described in terms of the 

generic critical-state ratio Mc given by  

( )c ccM M g θ=   (7) 

Elastic Moduli 

The stress-strain relation is given by 

( ) ( )22
3

vp vp
ij ij ij kk kk ijG K Gσ ε ε ε ε δ⎛ ⎞′ = − + − −⎜ ⎟

⎝ ⎠
  (8) 

where ijσ′  is the stress increment, ijε is the total strain increment, vp
ijε  is the viscoplastic 

strain increment, kkε  and vp
kkε  are the total and viscoplastic volumetric strain increments, 

respectively, and K and G are the bulk and shear moduli, respectively.  The shear 

modulus is given by (Hardin and Richart 1963) 

( ) ( )
2

1

1
g gng n

g a

e e
G C p p

e
−−

′=
+

   (9) 

where gC , gn  and ge  are input parameters.  The bulk modulus is related to the shear 

modulus through a constant Poisson’s ratio ν as 
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2 2
3 6

K G ν
ν

+
=

−
   (10) 

When the stress state is entirely within the yield surface, there is no viscoplastic 

strain in the soil.  However, because the yield surface is very small in this model, the 

viscoplastic process is prevalent for almost the entire loading duration. 

Viscoplastic Strain 

The total strain is divided into an elastic and a viscoplastic part, and is given by 

e vp
ij ij ijε ε ε= +    (11) 

where e
ijε  is the elastic strain increment.  When the stress state reaches or crosses the 

yield surface, the material undergoes viscoplastic strain.  In this model, the overstress 

theory of Perzyna (1963 and 1966) is used to model the viscoplastic behavior of sand.  

The overstress theory is based on the viscoplastic overstress function Φ defined as 

( )
F if  F > 0

F
0 if  F 0
⎧

Φ = ⎨ ≤⎩
 (12) 

where the parameter F quantifies the overstress, i.e., the “distance” between the 

viscoplastic stress state and the yield surface.  In this constitutive model, F = f is assumed 

because, in the cutting plane algorithm used in the implementation of the model, f gives a 

measure of the distance of the current stress state from the yield surface (Higgins 2011).  

The magnitude and direction of the viscoplastic strain is determined by the flow rule 

vp
ij ijRε λ=    (13) 

where the viscoplastic multiplier λ  is defined as 

( )F

v v

fλ
η η

Φ
= =    (14) 
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with ηv being the viscoplastic coefficient and ijR  is the gradient of the viscoplastic 

potential surface (Loukidis and Salgado 2009) given by 

1
3ij ij ijR R Dδ′= +

  
(15)

 

where ijR′  is the deviatoric component of the gradient (Dafalias and Manzari 2004) that 

gives the direction of the deviatoric viscoplastic strain rate and D is the dilatancy that 

controls the shear-induced volumetric viscoplastic strain rate.  In this model, the 

viscoplastic potential is assumed to be identical with the plastic potential used by 

Dafalias and Manzari (2004) and Loukidis and Salgado (2009).  The dilatancy D is given 

by (Li and Dafalias 2000) 

( )0 2
3 d ij ij

cc

D
D M m n

M
α

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠  
(16)

 

where D0 is an input parameter. 

Viscoplastic Modulus 

The viscoplastic modulus KP used in equation (3) controls the development of the 

viscoplastic strain and is expressed as a function of the distance between the current 

stress state and the bounding surface (Li and Dafalias 2002, Loukidis 2006): 

0

,ini ,ini

exp( ) 2 2 ( )
3 33 ( )( )

2

b
P b ij ij

ij ij ij ij

G kK h M m n
r r

μ
ψ α

α α

⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎡ ⎤ ⎝ ⎠− −⎢ ⎥⎣ ⎦

  
(17)

 

where μ is an input parameter and ,iniijα  is the initial value of the kinematic hardening 

tensor.  The term ( )2 3 b ij ijM m nα− − ) is the distance between the current stress state 

and the projected stress state on the bounding surface.  The parameter 0h  takes into 
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account the effect of void ratio (loose sand develops viscoplastic strains with more ease 

than dense sand) and is given by 

1

lim
0

2

h
e eh

h
⎛ ⎞−

= ⎜ ⎟
⎝ ⎠    

(18)
 

where 1h , 2h  and lime  are input parameters (Loukidis 2006). 

MODEL IMPLEMENTATION USING CUTTING PLANE ALGORITHM 

The constitutive model is integrated into the finite element software Abaqus using 

an extension of the cutting plane algorithm for viscoplasticity proposed by Ortiz and 

Simo (1986).  The cutting plane algorithm is a semi-implicit algorithm that uses explicit 

elastic predictions with an iterative viscoplastic correction loop.   

Figure 3 shows a flowchart of the viscoplastic cutting plane algorithm used in this 

study.  The inputs to the algorithm at any time t are the current values of stress (σij), 

strain (εij) and hardening variables ξi, all denoted with a superscript t, the applied strain 

increment ijε  and the time increment dt (dt is controlled from outside of the algorithm 

either by the user or by the finite element analysis).  The prime (') associated with the 

stress tensor is dropped with the understanding that all the stresses calculated are 

effective stresses.  The calculations begin with an elastic prediction step using the current 

values of the stress state σij and the kinematic hardening variable αij.  Note that αij is 

generically denoted by ξi in Figure 3 and its evolution (equation (3)) is expressed as a 

function of a generic tensor hi.  During the elastic prediction step, the stress σij is 

increased based on the assumption that the strain increment ijε  is completely elastic.  The 

stiffness ijklD  used in the elastic prediction is the shear modulus when the deviatoric 
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stress is calculated from the deviatoric strain and is the bulk modulus when the mean 

stress is calculated from the volumetric strain.  Once the stress and strain increments have 

been calculated, the tensors are updated.  In addition to updating the stresses and strains, 

parameters such as the void ratio, stress invariants, and the state parameter ψ are also 

updated (note that Dijkl is not updated and stays at the same value as used during the 

elastic prediction).  Using the new values of ijσ  and ξi, the position of the stress state 

relative to the yield surface is checked by calculating the overstress f (= f (i) where the 

superscript i within parentheses counts the iterations of the viscoplastic correction loop) 

and comparing it against the yield surface error tolerance FTOL, which is a small positive 

number.    If the stress state is within the yield surface or sufficiently close to it such that 

the yield function is less than or equal to FTOL (i.e., f FTOL≤ ), then the increment is 

accepted and the algorithm is complete.  However, if during the elastic prediction step the 

stress state exceeds the boundary of the yield surface (i.e., f FTOL> ), then the 

algorithm enters into an iterative viscoplastic correction loop.  The value of FTOL can be 

determined by the user and should be calibrated based on the anticipated levels of stress, 

the required degree of accuracy and the available computational resources —  in this 

study, a value of 0.1 Pa was used. 

In the viscoplastic correction loop, the incremental viscoplastic multiplier is 

calculated by considering a Taylor series expansion of the yield function as 

v

ft tλ λ
η

Δ = Δ =  (19)  

where ( 1) ( 1) ( )( )i i it t t t+ +Δ = Δ = −  is the time elapsed during an iteration of the correction 

loop.  The term t  represents instantaneous time (Ortiz and Simo 1986) given by 
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Figure 3. Cutting plane algorithm flow chart 
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v

ijkl kl P
ij

t f D R K

η

σ

=
∂ −
∂  

(20) 

The value of λΔ from equation (19) is used to quantify the change in the variables 

(e.g., σij and ξi) between the iterations of the correction loop, and the updated values of 

stresses and hardening variables are calculated to obtain the updated yield function value 

f (i+1) (Higgins 2011).  The iterations in the viscoplastic correction loop continue until the 

yield function value falls within the tolerance FTOL (i.e., ( 1)if FTOL+ ≤ ) or until the 

time increment dt is exhausted. 

It is possible in the course of the viscoplastic correction that the position of the 

final, relaxed stress state is inside the yield surface.  Theoretically, this condition (i.e., 

( 1) 0if + ≤ ) is not possible and it also gives rise to numerical problems.  Hence, an 

additional check is done to make sure that the value of ( 1) 0if + > .  Therefore, if the 

predicted value of λΔ causes the overstress to move inside the yield surface resulting in 

( 1) 0if + ≤ , then the iteration is rejected, σij and ξi are returned to the values of the 

previous iteration and a decreased value of λΔ  is used to proceed further (the decreased 

value of λΔ  is assumed to be /10λΔ  in this study).  It should be noted that decreasing 

the value of λΔ  does not affect the solution of the final stress value that is converged 

upon, it only affects the number of iterations required to reach the converged value. 

The actual elapsed time tΔ  of an iteration of the correction loop is calculated 

from the previous and updated values of the yield function, f (i) and f (i+1), as (Ortiz and 

Simo 1986) 
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( )

( 1)ln
i

i

ft t
f +

⎛ ⎞
Δ = ⎜ ⎟

⎝ ⎠
 (21) 

When the summation of the elapsed time of the iterations in the correction loop 

( )

( )

i

i
tΔ∑  becomes equal to the time increment dt of the analysis, the relaxation time 

expires.  Thus, when ( )

( )

i

i
t dtΔ =∑ , the program exits the viscoplastic correction loop.   

If after updating the stresses it is found that ( )

( )

i

i

t dtΔ >∑ , then too much time has 

elapsed and the current stress state is invalid.  If that happens (i.e., if 
( )

( )

i

i

t dtΔ >∑ ), then 

the set of iterations is rejected ⎯ the algorithm returns to the previous values of stresses, 

hardening variables and state parameters, and starts again with a decreased value of λΔ .  

This process is continued until 
( )

( )

i

i
tΔ∑ falls within some tolerance of dt .  This tolerance 

was so set that, in order for the program to exit the correction loop, the total elapsed time 

has to meet the condition ( )

( )
(1 ) i

i

TTOL dt t dt− < Δ ≤∑  where TTOL =
 
0.0001. 

It is clear from the above discussion that the algorithm exits the viscoplastic 

correction loop if the time increment dt is exhausted (i.e., if ( )

( )

i

i
t dtΔ =∑ ) or if the 

viscoplastic stress state is sufficiently close to the yield surface (i.e., ( 1)if FTOL+ ≤ ).  If 

the time increment gets exhausted before the condition ( 1)if FTOL+ ≤  is satisfied, then 

the stress state remains outside the yield surface as the algorithm moves to the next time t 

+ dt.  If, on the other hand, the condition ( 1)if FTOL+ ≤  is satisfied, then the algorithm is 

moved to the next time t + dt even before the time increment dt is exhausted because, in 
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the remainder of the time available for viscoplastic corrections, the change in the values 

of the stresses and hardening variables is minimal. 

The implementation of the cutting plane algorithm is done in conjunction with an 

error control algorithm (Higgins 2011).  The error control algorithm limits the magnitude 

of the time increment dt by comparing the stresses obtained by executing the cutting 

plane algorithm with dt as the time increment with the stresses obtained after two 

successive executions of the cutting plane algorithm each with a time increment of dt/2.   

If the difference between the stresses obtained from these two sets of solution is large, 

then the time step dt is decreased until the difference falls within a tolerable limit. 

MODEL CALIBRATION AND VALIDATION 

The developed constitutive model was used to simulate the drained triaxial 

compression tests and SHPB tests performed on Ottawa and Fontainebleau sands.  The 

parameters used in the simulations are given in Table 1.  The parameters used for the 

Ottawa sand were mostly obtained from Loukidis (2006) in which the calibrations were 

done based on triaxial compression tests (Carraro 2004, Murthy et al. 2006), triaxial 

extension tests (Murthy et al. 2006) and bender element tests (Carraro 2004).  

Modifications were made to the values of the critical-state parameters Γ ,λ , and ζ so as 

to better capture the sand behavior at high strain rates and at high pressures (> 100 MPa) 

experienced in the SHPB tests.  The new values of these parameters were obtained by 

optimizing the critical-state line to capture the behavior of the SHPB tests (Veyera and 

Ross 1995) while maintaining good agreement with the triaxial tests (Higgins 2011).  The 

model calibration for Fontainebleau sand was done using the data from triaxial 

compression tests (Luong 1980, Dano et al. 2004, Hircher et al. 2008, Gaudin et al. 
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2003), triaxial extension tests (Luong 1980), torsional hollow cylinder tests (Georgiannou 

and Tsomokos 2008) and SHPB tests (Semblat et al. 1999). 

Table 1. Parameters used in the simulations of Ottawa and Fontainebleau sand tests 

Parameters Ottawa Sand Fontainebleau Sand 

ν 0.15 0.3 

gC  611 650 

ge  2.17 2.17 

gn  0.437 0.437 

Γ 0.85 2.0 
λ  0.12 1.1 
ζ 0.275 0.1 

ccM  1.31 1.157 

bk  1.9 3.0 

1h  2.2 1.2 

2h  0.24 0.2 

lime  0.81 1.0 
m 0.05 0.05 

1C  0.71 0.71 

sn 0.35 0.35 

0D  1.31 0.5 

dk  2.2 2.0 
μ 1.2 1.2 

vη  (kPa-sec) 50 5 

Maximum Void Ratio maxe 0.78 0.863 

Minimum Void Ratio mine 0.48 0.523 
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Simulation of Triaxial Tests 

The triaxial tests were simulated using a single, axisymmetric element in the finite 

element software Abaqus version 6.9 (Abaqus User’s Manual 2009).  The element was 

fixed against vertical movement along its bottom edge.  The element was loaded with an 

initial hydrostatic pressure maintained as a constant load on the outer radial edge.  The 

analysis was driven by applying displacements at the top edge of the element.   

The simulations of the triaxial compression tests for Ottawa sand are based on the 

laboratory test data of Carraro (2004).  The initial confining pressure in these tests was 

set at 100 kPa and the tests were run at the initial void ratio e0 = 0.7 and 0.55.  Figures 

4(a) and (b) show the deviatoric stress versus axial strain and the volumetric strain versus 

axial strain plots, respectively.  It is evident that the constitutive model differentiates 

between dilative and contractive behavior of sand at different void ratios and provides a 

reasonable match with the experimental results.  A similar match between the 

experimental and simulation results was obtained for Fontainebleau sand under triaxial 

compression tests (Higgins 2011). 
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(a) 
 

 

 

(b) 

Figure 4. (a) Deviatoric stress versus axial strain and (b) volumetric strain versus axial 
strain of Ottawa sand in drained triaxial tests with an initial confining pressure of 100 kPa 
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Simulation of SHPB Tests 

The SHPB tests were also simulated using Abaqus.  Four separate axisymmetric 

parts were created to simulate the striker bar, incident bar, output bar and the soil sample.  

The magnitude of the impulse wave was controlled by adjusting the initial velocity of the 

striker bar in Abaqus.  In the actual experiments, the soil sample was confined against 

transverse displacement with a rigid collar.  In the simulations, this effect was accounted 

for by directly applying boundary conditions to the soil elements so that the transverse 

displacement was restrained.  The contact planes between the bars and the specimen were 

modeled using hard contact. 

The SHPB tests on dry Ottawa sand were conducted by Veyera and Ross (1995).  

The strain rates achieved in these tests were between 1000/sec and 2000/sec.  The Ottawa 

sand samples were compacted to a void ratio of 0.545.  The samples had a diameter of 

5.08 cm and lengths L0 = 1.27 cm and 0.635 cm.  The SHPB set up had stainless steel 

bars with a diameter of 5.08 cm.  The material properties used for simulating the bars are 

Young’s modulus = 207 GPa and density = 7850 kg/m3.  The striker bar had a length of 

0.635 m, the incident bar had a length of 3.66 m and the output bar had a length of 3.35 

m.  By using an initial striker bar velocity of 12 m/sec in the simulations, an impulse 

wave comparable to the one reported by Veyera and Ross (1995) was produced.  

Figure 5 shows the axial stress versus axial strain plots of the SHPB tests 

performed on Ottawa sand samples.  The stress-strain plots show that a sample subjected 

to a faster strain rate achieves greater stresses.  There is a reasonably good match between 

the experimental data and simulation results. 
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Figure 5. Axial stress versus axial strain of Ottawa sand in split Hopkinson pressure bar 
tests 

The simulations for Fontainebleau sand are based on the SHPB tests performed by 

Semblat et al. (1999) on dry samples.  Semblat et al. (1999) ran tests with different 

lengths of the sand sample and with different velocities of the striker bar to create 

different strain rates in the samples.  The stress-strain plots are shown in Figure 6 for tests 

performed with samples of length 10 cm and diameter 40 mm with the initial striker bar 

velocity 0V  = 6.8 m/sec, 11.6 m/sec and 19.8 m/sec.  The samples had an initial void ratio 

of 0.667.  The bars used in the SHPB set up had a diameter of 40 mm, Young’s modulus 

of 70 GPa and density of 2820 Kg/m3.  The striker bar had a length of 0.85 m while the 

impulse and output bars each had a length of 2 m.  The simulated stress-strain plots 

match the experimental results well. 



24 
 

 

Figure 6. Axial stress versus axial strain of Fontainebleau sand in split Hopkinson 
pressure bar tests 

FINITE ELEMENT ANALYSIS OF TUNNELS SUBJECTED TO BLAST 

The developed constitutive model was used to analyze underground tunnels 

subjected to internal blast loads.  The purpose of these simulations is to demonstrate the 

ability of the constitutive model to simulate real field problems and to gain insights into 

how soil adjacent to a tunnel behaves when a blast occurs inside the tunnel.   

Two dimensional plane strain FE analyses were performed using rectangular, 

plain strain, reduced integration (CPE4R) elements in Abaqus, and the resulting stress 

waves propagating through the surrounding soil were simulated.  Two geometries were 

considered in this study.  In one case, the center line of the tunnel was at 5 m below the 

ground surface and, in the other case, the tunnel center line was at a depth of 10 m.  For 
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both the cases, the tunnel had an internal radius of 2.85 m with a 0.15 m thick concrete 

lining. 

A typical finite element mesh is shown in Figure 7.  In order to save on the 

computation time, only one half of the actual domain was analyzed by imposing a 

symmetry boundary condition along the left vertical boundary of the mesh.  The top 

horizontal boundary was free to displace while the bottom horizontal boundary was 

restrained against both vertical and horizontal displacements.  Vertical displacements 

were allowed along the left and right vertical boundaries but not horizontal 

displacements.  The bottom horizontal boundary and the right vertical boundary were 

located at sufficient distances so that they had no impact on the results of the analysis ⎯ 

the results were obtained at a time when the stress wave from the blast was far from these 

boundaries.  The mesh for the 5 m deep tunnel consists of 1624 elements and 1718 nodes 

and the mesh for the 10 m deep tunnel consists of 2306 elements and 2414 nodes. 

It was assumed in the FE analyses that the grounds surrounding the tunnels have 

properties similar to Ottawa and Fontainebleau sands.  Two different relative density (DR) 

values, 50% (which corresponds to an initial void ratio e0 = 0.63 for Ottawa sand and to 

e0 = 0.69 for Fontainebleau sand) and 80% (which corresponds to e0 = 0.54 for Ottawa 

sand and to e0 = 0.59 for Fontainebleau sand), were considered.  The concrete lining of 

the tunnels was simulated using the concrete damaged plasticity model built into Abaqus.  

The material properties used for concrete are Young’s modulus = 31 GPa, Poisson’s ratio 

= 0.15, compressive yield strength = 13 MPa and tensile yield strength = 2.9 MPa.  The 

stresses generated in the ground due to the explosions inside the tunnels were 

investigated along a horizontal path AB shown in Figure 8. 
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Figure 7. A typical finite element mesh used in the analysis of tunnels (the tunnel center 
line is at a depth of 5 m below the ground surface) 

 

Figure 8. Path AB along which stresses in soil are studied 
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Blasts due to the explosive C4 were simulated using the Jones-Wilkens-Lee 

(JWL) equation-of-state model (Lee et al. 1973) with the assumption that the explosive 

material is located at the center line of the tunnel.  The radius of the explosive material 

assumed before detonation is 0.1 m ⎯ this corresponds to a mass of 50.3 kg/m.  Air 

elements were used to mesh the interior of the tunnel and the dynamic pressure acting on 

the inner tunnel wall due to the explosions were generated as a function of time as shown 

in Figure 9 (Higgins 2011). 

 

Figure 9. Pressure amplitude curve for the explosive C4 of radius 0.1 m in a tunnel with 
an internal radius of 2.85 m 

Figures 10(a) and (b) show the variations of the mean and deviatoric stresses with 

time at three different points in the ground at a distance d = 0.5 m, 1.5 m and 2.5 m from 
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the interface of the tunnel and ground along the horizontal path AB (Figure 8).  The 

center line of the tunnel is located at a depth of 10 m below the ground surface.  The 

ground is assumed to have the same properties as that of Ottawa sand with DR = 50% and 

80%.  As the stress wave propagates, the stresses at different horizontal distances 

increase, reach a maximum and then decrease.  The maximum values of the stresses 

experienced by a point in soil decreases as the distance of the point from the tunnel 

increases.  In the denser sand (i.e., for DR = 80%), the wave propagates faster and the 

stresses reach higher peaks. 

Figures 11(a) and (b) compare the temporal variations of the mean and deviatoric 

stresses at three different points along the path AB for Ottawa sand Fontainebleau sands 

with DR = 80%.  It is evident that the wave speed and the peak mean stress are greater in 

Fontainebleau sand than in Ottawa sand.  These results were obtained for the 10 m deep 

tunnel. 

Figures 12(a) and (b) show the spatial variations of the maximum mean and 

deviatoric stresses along the horizontal path AB for the 10 m deep tunnel.  In order to 

obtain the plots, the mean and deviatoric stress versus time data were recorded for all the 

elements along the path AB and the maximum stresses experienced over time in each 

element are plotted as a function of the distance of the element from the outer edge of the 

tunnel lining.  The rate of spatial dissipation of the maximum mean stress is comparable 

for both the sands while the spatial dissipation of the maximum deviatoric stress is faster 

in Ottawa sand. 

 

 



29 
 

 

(a) 
 

 
 

(b) 

Figure 10. Temporal variation of (a) mean stress and (b) deviatoric stress at three points 
in the ground adjacent to 10 m deep tunnels in Ottawa sand subjected to explosions of C4 
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(a) 
 

 
 

(b) 

Figure 11. Temporal variation of (a) mean stress and (b) deviatoric stress at three points 
in the ground adjacent to 10 m deep tunnels in Ottawa and Fontainebleau sands subjected 

to explosions of C4 
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(a) 
 

 
 

(b) 

Figure 12. Spatial variation of (a) maximum mean stress and (b) maximum deviatoric 
stress in the ground adjacent to 10 m deep tunnels subjected to C4 explosions 
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Figures 13 (a) and (b) show the p'-q and e-p' relationships of a soil element on the 

path AB immediately adjacent to the 10 m deep tunnel.  The normalized void ratio e/e0 

(e0 is the initial void ratio) is plotted in Figure 13(b).  It is interesting to note that the 

changes in the stresses due to blast are quite large but the changes in the void ratio are 

rather insignificant. 

Figures 14(a) and (b) show how the depth of tunnel affects the ground response.  

For these figures, the simulations were performed for Ottawa sand with tunnels having 

center lines at the depths of 5 m and 10 m from the ground surface.  It is evident that the 

spatial dissipations of the maximum mean and deviatoric stresses (along the path AB) are 

faster for the shallower tunnel. 
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(a) 
 

 
 

(b) 

Figure 13. (a) Mean stress versus deviatoric stress and (b) normalized void ratio versus 
mean stress for the soil element horizontally adjacent to 10 m deep tunnels exploded with 

C4 
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(a) 
 

 
 

(b) 

Figure 14. (a) Maximum mean stress and (b) maximum deviatoric stress versus 
horizontal distance from 5 m and 10 m deep tunnels in Ottawa sand subjected to C4 

explosions 
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CONCLUSIONS 

In this report, a constitutive model was developed which is capable of simulating 

the high strain-rate behavior of sands under multi-axial loading conditions.  The model is 

developed from the modified bounding surface plasticity model of Manzari and Dafalias 

(1997) in conjunction with the overstress theory of viscoplasticity (Perzyna 1963, 1966).  

The developed model is capable of distinguishing and simulating the behavior of 

contractive and dilative sands under rate-independent and high-rate loads.  The 

parameters of the model were calibrated to simulate the mechanical behavior of Ottawa 

and Fontainebleau sands.  The critical-state parameters of the model were adjusted to 

account for the large stresses experienced in the split Hopkinson pressure bar tests and 

during blast loading in soil.  The model was implemented in the finite element software 

Abaqus using the cutting plane algorithm and was used to analyze static and transient 

problems.  Static drained triaxial tests and dynamic split Hopkinson pressure bar tests on 

Ottawa and Fontainebleau sands were simulated for the validation of the model. 

The constitutive model was subsequently applied in two dimensional (plane 

strain) finite element analysis of tunnels subject to blast loads.  Circular underground 

tunnels constructed in sandy soils were subjected to blasts caused by the explosion of C4.  

The blast was simulated using the JWL equation-of-state model.  It was found that the 

type and relative density of sand and the depth of tunnel influence the propagation of the 

blast induced stress waves through the ground.  The wave speed was found to be greater 

in Fontainebleau sand than in Ottawa sand.  The rate of spatial dissipation of the 

maximum mean stress was comparable for both the sands while the spatial dissipation of 

the maximum shear stress was faster in Ottawa sand.  The speed of propagation of the 



36 
 

stress waves is faster in denser sands.  The rates of spatial dissipation of the maximum 

mean and deviatoric stresses are greater in a 5 m deep tunnel than in a 10 m deep tunnel. 
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