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What Does Height Really Mean?

Part II: Physics and Gravity1

Thomas H. Meyer, Daniel R. Roman, 
and David B. Zilkoski

ABSTRACT: This is the second paper in a four-part series considering the fundamental question, “what 
does the word height really mean?” The first paper in this series explained that a change in National 
Geodetic Survey’s policy, coupled with the modern realities of GPS surveying, have essentially forced 
practicing surveyors to come to grips with the myriad of height definitions that previously were the sole 
concern of geodesists. The distinctions between local and equipotential ellipsoids were considered, along 
with an introduction to mean sea level. This paper brings these ideas forward by explaining mean sea 
level and, more importantly, the geoid. The discussion is grounded in physics from which gravitational 
force and potential energy will be considered, leading to a simple derivation of the shape of the Earth’s 
gravity field. This lays the foundation for a simplistic model of the geoid near Mt. Everest, which will be 
used to explain the undulations in the geoid across the entire Earth. The terms geoid, plumb line, potential, 
equipotential surface, geopotential number, and mean sea level will be explained, including a discussion of why 
mean sea level is not everywhere the same height; why it is not a level surface.

Introduction: 
Why Care About Gravity?

Any instrument that needs to be leveled 
in order to properly measure hori-
zontal and vertical angles depends on 

gravity for orientation. Surveying instruments 
that measure gravity-referenced heights depend 
upon gravity to define their datum. Thus, many 
surveying measurements depend upon and are 
affected by gravity. This second paper in the 
series will develop the physics of gravity, leading 
to an explanation of the geoid and geopotential 
numbers. 

The direction of the Earth’s gravity field 
stems from the Earth’s rotation and the mass 
distribution of the planet. The inhomogeneous 
distribution of that mass causes what are known 
as geoid undulations, the geoid being defined by 
the National Geodetic Survey (1986) as “The 
equipotential surface of the Earth’s gravity field 
which best fits, in a least squares sense, global 
mean sea level.” The geoid is also called the 

“figure of the Earth.” Quoting Shalowitz (1938, 
p. 10), “The true figure of the Earth, as distin-
guished from its topographic surface, is taken 

to be that surface which is everywhere perpen-
dicular to the direction of the force of gravity 
and which coincides with the mean surface of 
the oceans.” The direction of gravity varies in a 
complicated way from place to place. Local ver-
tical remains perpendicular to this undulating 
surface, whereas local normal remains perpen-
dicular to the ellipsoid reference surface. The 
angular difference of these two is the deflection of 
the vertical. 

The deflection of the vertical causes angu-
lar traverse loop misclosures, as do instru-
ment setup errors, the Earth’s curvature, and 
environmental factors introducing errors into 
measurements. The practical consequence of 
the deflection of the vertical is that observed 
angles differ from the angles that result from 
the pure geometry of the stations. It is as if the 
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observing instrument were misleveled, resulting 
in traverses that do not close. This is true for 
both plane and geodetic surveying, although 
the effect for local surveys is seldom measurable 
because geoid undulations are smooth and do 
not vary quickly over small distances. Even so, it 
should be noted that the deflection of the verti-
cal can cause unacceptable misclosures even over 
short distances. For example, Shalowitz (1938, p. 
13, 14) reported deflections of the vertical cre-
ated discrepancies between astronomic coordi-
nates and geodetic (computed) coordinates up 
to a minute of latitude in Wyoming. In all cases, 
control networks for large regions cannot ignore 
these discrepancies, and remain geometrically 
consistent, especially in and around regions 
of great topographic relief. Measurements 
made using a gravitational reference frame are 
reduced to the surface of a reference ellipsoid to 
remove the effects of the deflection of the verti-
cal, skew of the normals, topographic enlarge-
ment of distances, and other environmental 
effects (Meyer 2002).

The first article in this series introduced the 
idea that mean sea level is not at the same height 
in all places. This fact led geodesists to a search 
for a better surface than mean sea level to serve 
as the datum for vertical measurements, and that 
surface is the geoid. Coming to a deep under-
standing of the geoid requires a serious inquiry 
(Blakely 1995; Bomford 1980; Heiskanen and 
Moritz 1967; Kellogg 1953; Ramsey 1981; Torge 
1997; Vanicek and Krakiwsky 1996), but the con-
cepts behind the geoid can be developed with-
out having to examine all the details. The heart 
of the matter lies in the relationship between 
gravitational force and gravitational potential. 
Therefore, we review the concepts of force, work, 
and energy so as to develop the framework to 
consider this relationship.

Physics

Force, Work, and Energy
Force is what makes things go. This is apparent 
from Newton’s law, F = m a, which gives that the 
acceleration of an object is caused by, and is in 
the direction of, a force F and is inversely pro-
portional to the object’s mass m. Force has mag-
nitude (i.e., strength) and direction. Therefore, 
a force is represented mathematically as a vector 
whose length and direction are set equal to 
those of the force. We denote vectors in bold 

face, either upper or lower case, e.g., F or f, 
and scalars in standard face, e.g., the speed of 
light is commonly denoted as c. Force has units 
of mass times length per second squared and 
is named the “newton,” abbreviated N, in the 
meter-kilogram-second (mks) system.

There is a complete algebra and calculus of 
vectors (e.g., see Davis and Snider (1979) or 
Marsden and Tromba (1988)), which will not be 
reviewed here. However, we remind the reader 
of certain key concepts. Vectors are ordered 
sets of scalar components, e.g., (x,y,z) or F = 
(F1,F2,F3), and we take the magnitude of a vector, 
which we denote as |F|, to be the square root of 
the sum of the components:  

For example, 
if F = (1,-4,2), then
 
Vectors can be multiplied by scalars (e.g., c A) and, 

in particular, the negative of a vector is defined as 
the scalar product of minus one with the vector: -A 
= -1 A. It is easy to show that -A is a vector of mag-
nitude equal to A but oriented in the opposite 
direction. Division of vectors by scalars is simply 
scalar multiplication by a reciprocal: F/c = 1/c F. 
A vector F divided by its own length results in 
a unit vector, being a vector in the same direc-
tion as F but having unit length—a length of 
exactly one. We denote a unit vector with a hat: 

Vectors can be added (e.g., A + B) and sub-
tracted, although subtraction is defined in 
terms of scalar multiplication by -1 and vector 
addition (i.e., A - B = A + (-B)). The result of 
adding/subtracting two vectors is another vector; 
likewise with scalar multiplication. By virtue of 
vector addition (the law of superposition), any 
vector can be a composite of any finite number 
of vectors: 

The inner or scalar product of two vectors 
is defined as:

  

where θ is the angle between a and b in the plane 
that contains them. In particular, note that if a is 
perpendicular to b, then because cos 90° 

= 0. We will make use of the fact that the inner 
product of a force vector with a unit vector is a 
scalar equal to the magnitude of the component 
of the force that is applied in the direction of the 
unit vector.

(II.1)
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Newton’s law of gravity specifies that the 
gravitational force exerted by a mass M on a 
mass m is: 

  

where:
 G = universal gravitational constant; and 
 r = a vector from M’s center of mass to 
        m’s center of mass. 

The negative sign accounts for gravity being an 
attractive force by orienting Fg in the direction 
opposite of (since is the unit vector from M to 
m, Fg needs to be directed from m to M). In light of 
the discussion above about vectors, Equation (II.2) is 
understood to indicate that the magnitude of gravi-
tational force is in proportion to the masses of the 
two objects, inversely proportional to the square of 
the distance separating them, and is directed along 
the straight line joining their centroids.

In geodesy, M usually denotes the mass of 
the Earth and, consequently, the product G M 
arises frequently. Although the values for G and 
M are known independently (G has a value of 
approximately 6.67259×10-11 m3 s-2 kg-1 and M is 
approximately 5.9737×10-24 kg), their product can 
be measured as a single quantity and its value has 
been determined to have several, nearly identical 
values, such as GM=398600441.5±0.8x106 m3 s2 
(Groten 2004).

Gravity is a force field, meaning that the gravity 
created by any mass permeates all of space. One 
consequence of superposition is that gravity fields 
created by different masses are independent of 
one another. Therefore, it is reasonable and con-
venient to consider the gravitational field created 
by a single mass without taking into consideration 
any objects within that field. Equation (II.2) can be 
modified to describe a gravitational field simply by 
omitting m. We can compute the strength of the 
Earth’s gravitational field at a distance equal to the 
Earth’s equatorial radius (6,378,137 m) from the 
center of M by:

This value is slightly larger than the well-
known value of 9.78033 m/s2 because the latter 

includes the effect of the Earth’s rotation.2 We 
draw attention to the fact that Equation (II.3) 
has units of acceleration, not a force, by virtue of 
having omitted m.

It is possible to use Equation (II.3) to draw a 
picture that captures, to some degree, the shape 
of the Earth’s gravitational field (see Figure II.1). 
The vectors in the figure indicate the magnitude 
and direction of force that would be experienced 
by unit mass located at that point in space. The 
vectors decrease in length as distance increases 
away from the Earth and are directly radially 
towards the Earth’s center, as expected. However, 
we emphasize that the Earth’s gravitational field 
pervades all of space; it is not discrete as the 
figure suggests. Furthermore, it is important to 
realize that, in general, any two points in space 
experience a different gravitational force, if per-
haps only in direction. 

We remind the reader that the current discus-
sion is concerned with finding a more suitable 
vertical datum than mean sea level, which is, in 
some sense, the same thing as finding a better 
way to measure heights. Equation (II.3) suggests 
that height might be inferred by measuring 
gravitational force because Equation (II.3) can 
be solved for the magnitude of r, which would 
be a height measured using the Earth’s center 
of gravity as its datum. At first, this approach 
might seem to hold promise because the accel-
eration due to gravity can be measured with 
instruments that carefully measure the accelera-
tion of a standard mass, either as a pendulum 
or free falling (Faller and Vitouchkine 2003). It 
seems such a strategy would deduce height in a 
way that stems from the physics that give rise to 
water’s downhill motion and, therefore, would 
capture the primary motivating concept behind 
height very well. Regrettably, this is not the case 
and we will now explain why.

Suppose we use gravitational acceleration as 
a means of measuring height. This implies that 
surfaces of equal acceleration must also be level 
surfaces, meaning a surface across which water 
does not run without external impetus. Thus, 
our mean sea level surrogate is that set of places 

(II.3)

(II.4)

2 The gravity experienced on and around the Earth is a combi-
nation of the gravitation produced by the Earth’s mass and 
the centrifugal force created by its rotation. The force due 
solely to the Earth’s mass is called gravitational and the 
combined force is called gravity. For the most part, it will 
not be necessary for the purposes of this paper to draw a 
distinction between the two. The distinction will be empha-
sized where necessary.

(II.2)
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that experience some particular gravitational 
acceleration; perhaps the acceleration of the 
normal gravity model, g0, would be a suitable 
value. The fallacy in this logic comes from the 
inconsideration of gravity as a vector; it is not 
just a scalar. In fact, the heart of the matter lies 
not in the magnitude of gravity but, rather, in its 
direction.  

If a surface is level, then water will not flow 
across it due to the influence of gravity alone. 
Therefore, a level surface must be situated such 
that all gravity force vectors at the surface are 
perpendicular to it; none of the force vectors 
can have any component directed across the 
surface. Figure II.2 depicts a collection of force 
vectors that are mutually perpendicular to a 
horizontal surface, so the horizontal surface is 
level, but the vectors have differing magnitudes. 
Therefore, it is apparent that choosing a surface 
of equal gravitational acceleration (i.e., magni-
tude) does not guarantee that the surface will 
be level. Of course, we have not shown that this 
approach necessarily would not produce level 
surfaces. It might be the case that it happens 
that the magnitude of gravity acceleration vec-
tors just happen to be equal on level surfaces. 
However, as we will show below, this is not the 
case due to the inhomogeneous distribution of 
mass within the Earth.

We can use this idea to explain why the sur-
face of the oceans is not everywhere the same 
distance to the Earth’s center of gravity. The 
first article in this series noted several reasons 
for this, but we will discuss only one here. It 
is known that the salinity in the oceans is not 
constant. Consequently, the density of the water 
in the oceans is not constant, either, because it 
depends on the salinity. Suppose we consider 

columns of water along a coast line and suppose 
that gravitational acceleration is constant along 
the coasts (see Figure II.3). In particular, con-
sider the columns A and B. Suppose the water 
in column A is less dense than in column B; per-
haps a river empties into the ocean at that place. 
We have assumed or know that: 
•  The force of gravity is constant,
• The columns of water must have the same 

weight in order to not flow, and
•  The water in column A is less dense than that 

in column B.
It takes more water of lesser density to have the 
same mass as the amount of water needed of 
greater density. Water is nearly incompressible, 
so the water column at A must be taller than 
the column of water at B. Therefore, a mean 
sea level station at A would not be at the same 
distance from the Earth’s center of gravity as a 
mean sea level station at B. 

As another example showing why gravitational 
force is not an acceptable way to define level sur-
faces, Figure II.4 shows the force field generated 
by two point–unit masses located at (0,1) and (0,-
1). Note the lines of symmetry along the x and y 
axes. All forces for places on the x-axis are paral-
lel to the axis and directed towards (0,0). Above 
or below the x-axis, all force lines ultimately lead 
to the mass also located on that side. Figure II.5 
shows a plot of the magnitude of the vectors of 
Figure II.4. Note the local maxima around x±1 
and the local minima at the origin. Figure II.6 is 

Figure II.2. A collection of force vectors that are all normal 
to a surface (indicated by the horizontal line) but of differing 
magnitudes. The horizontal line is a level surface because 
all the vectors are normal to it; they have no component 
directed across the surface.

Figure II.1. The gravitational force field of a spherical 
Earth. Note that the magnitude of the force decreases 
with separation from the Earth.
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a plot of the “north-east” corner of the force vec-
tors superimposed on top of an isoforce plot of 
their magnitudes (i.e., a “contour plot” of Figure 
II.5). Note that the vectors are not perpendicu-
lar to the isolines. If one were to place a drop of 

water anywhere in the space illustrated by the 
figure, the water would follow the vectors to the 
peak and would both follow and cross isoforce 
lines, which is nonsensical if we take isoforce 
lines to correspond to level surfaces. This con-
firms that equiforce surfaces are not level.

These three examples explain why gravita-
tional acceleration does not lead to a suitable 
vertical datum, but they also provide a hint 
where to look. We require that water not flow 
between two points of equal height. We know 
from the first example that level surfaces have 
gravity force vectors that are normal to them. The 

second example illustrated that 
the key to finding a level surface 
pertains to energy rather than 
force, because the level surface in 
Figure II.3 was created by equal-
izing the weight of the water col-
umns. This is related to potential 
energy, which we will now discuss.

Work and
Gravitational
Potential Energy

Work plays a direct role in the 
definition of the geoid because 
it causes a change in the poten-

tial energy state of an object. In particular, when 
work is applied against the force of gravity caus-
ing an object to move against the force of gravity, 
that object’s potential energy is increased, and 
this is an important concept in understanding 
the geoid. Therefore, we now consider the phys-
ics of work.

Work is what happens when a force is applied 
to an object causing it to move. It is a scalar 
quantity with units of distance squared times 
mass per second squared, and it is called the 

“joule,” abbreviated J, in the mks system. Work 
is computed as force multiplied by distance, but 
only the force that is applied in the direction 
of motion contributes to the work done on the 
object. 

Suppose we move an object in a straight line. If 
we denote a constant force by F and the displace-
ment of the object by a vector s, then the work 
done on the object is W=F∙s (Equation (II.1)). This 
same expression would be correct even if F is not 
directed exactly along the path of motion, because 
the inner product extracts from F only that portion 
that is directed parallel to s. Of course, in gen-
eral, force can vary with position, and the path of 
motion might not be a straight line. Let C denote 
a curve that has been parameterized by arc length 
s, meaning that p = C (s) is a point on C that is s 
units from C’s starting point. Let denote a unit 
vector tangent to C at s. Since we want to allow force 
to vary along C, we adopt a notion that the force is 
a function of position F(s). Then, by application of 
the calculus, the work expended by the application 
of a possibly varying force along a possibly curving 
path C from s = s0 to s = s1 is:

  

Figure II.3. A collection water columns whose salinity, and therefore density, 
has a gradient from left to right. The water in column A is least dense. Under 
constant gravity, the height of column A must be greater than B so that the 
mass of column A equals that of column B.

Figure II.4. The force field created by two point masses.

(II.5)
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Equation (II.5) is general so we will use it 
as we turn our attention to motion within a 
gravitational force field. Suppose we were 
to move some object in the presence of a 
gravitational force field. What would be the 
effect? Let us first suppose that we move 
the object on a level surface, which implies 
that the direction of the gravitational force 
vector is everywhere normal to that surface 
and, thus, perpendicular to , as well. 
Since by assumption Fg is perpendicular 
to     , Fg plays no part in the work being 
done because  Therefore, 
moving an object over a level surface 
in a gravity field is identical to moving 
it in the absence of the field altogether, 
as far as the work done against gravity is 
concerned. 

Now, suppose that we move the object 
along a path such that the gravitational 
force is not everywhere normal to the 
direction of motion. From Equation 
(II.5) it is evident that either more or 
less work will be needed due to the force 
of gravity, depending on whether the motion is 
against or with gravity, respectively. The gravity 
force will simply be accounted for by adding it to 
force we apply; the object can make no distinction 
between them. Indeed, we can use superposition 
to separate the work done in the same direction 
as gravity from the work done to move laterally 
through the gravity field; they are orthogonal. 
We now state, without proof, a critical result 
from vector calculus: the work done by gravity 
on a moving body does not depend on the path 
of motion, apart from the starting and ending 
points. This is a consequence of gravity being 
a conservative field (Blakely 1995; Schey 1992). 
As a result, the work integral along the curve 
defining the path of motion can be simplified 
to consider work only in the direction of gravity. 
This path is called a plumb line and, over short 
distances, can be considered to be a straight line, 
although the force field lines shown in Figure 
II.6 show that plumb lines are not straight, in 
general. Therefore, from Equation (II.5), the 
work needed to, say, move some object vertically 
through a gravity field is given by: 

where:
h = height (distance along the plumbline);
         and 

= the direction of gravity.

  However, Fg(h) is always parallel to , so 

depending on whether the motion is with or 
against gravity. If we assume Fg(h) is constant, 
Equation (II.6) can be simplified as:

where we denote the assumed constant magni-
tude of gravitational acceleration at the Earth’s 
surface by g, as is customary. The quantity m g h 
is called potential energy, so Equation (II.7) indi-
cates that the release of potential energy will 
do work if the object moves along gravity force 
lines. The linear dependence of Equation (II.7) 
on height (h) is a key concept.

Figure II.5. The magnitude of the force field created by two point 
masses.

(II.6)

(II.6)

(II.3)

(II.7)

assuming Eg is constant
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The Geoid

What is the Geoid?
Although Equation (II.7) indicates a fundamen-
tal relationship between work and potential 
energy, we do not use this relationship directly 
because it is not convenient to measure work 
to find potential. Therefore, we rely on a direct 
relationship between the Earth’s potential field 
and its gravity field that we state without justifi-
cation:
 Eg =∇U 
where:
  U = the Earth’s potential field; and

∇ = gradient operator.3 Written out in 
Cartesian coordinates, Equation (II.8) becomes:

where are unit vectors in the x, y, and z 
directions, respectively. In spherical coordinates, 
Equation (II.8) becomes:

  

Equation (II.8) means that the gravity 
field is the gradient of the potential field. 
For full details, the reader is referred to the 
standard literature, including (Blakely 1995; 
Heiskanen and Moritz 1967; Ramsey 1981; 
Torge 1997; Vanicek and Krakiwsky 1996). 
Although Equation (II.8) can be proven easily 
(Heiskanen and Moritz 1967, p.2), the intu-
ition behind  the equation does not seem to 
be so easy to grasp. 

We will attempt to clarify the situation by 
asking the reader to consider the following, 
odd, question: why do air bubbles go upwards 
towards the surface of the water? The answer 
that is usually given is because air is lighter 
than water. This is surely so but F = m a, so 
if bubbles are moving, then there must be a 
force involved. Consider Figure II.7, which 
shows a bubble, represented by a circle, which 
is immersed in a water column. The horizon-
tal lines indicate water pressure. The pressure 
exerted by a column of water increases nearly 
linearly with depth (because water is nearly 
incompressible). The water exerts a force 
inwards on the bubble from all directions, 

which are depicted by the force vectors. If the 
forces were balanced, no motion would occur. 
It would be like a rope in a tug-of-war in which 
both teams are equally matched. Both teams are 
pulling the rope but the rope is not moving: 
equal and opposite forces cause no motion. 

However, the bubble has some finite height: 
the depth of the top of the bubble is less than the 
depth of the bottom of the bubble. Therefore, 
the pressure at the top of the bubble is less than 
the pressure at the bottom, so the force on the 
top of the bubble is less than that at the bottom. 
This pressure gradient creates an excess of force 
from below that drives the bubble upwards. 
Carrying the thought further, the difference in 
magnitude between any two lines of pressure is 
the gradient of the force field; it is the poten-
tial energy of the force field. The situation with 
gravity is exactly analogous to the situation with 
water pressure. Any surface below the water at 
which the pressure is constant might be called an 

“equipressure” surface. Any surface in or around 
the Earth upon which the gravity potential is 
constant is called an equipotential surface. Thus, 
a gravity field is caused by the difference in 

Figure II.6. The force field vectors shown with the isoforce 
lines of the field. Note that the vectors are not perpendicular 
to the isolines thus illustrating that equiforce surfaces are not 
level.

(II.8)

3 Other authors write Equation (II.8 ) as but the choice of the negative sign is essentially one of perspective: if the 
negative sign is included, the equation describes work done to overcome gravity. We prefer the opposite perspective because 
Equation (II.8) follows directly from Equation (II.3), in which the negative sign is necessary to capture the attractive nature of 
gravitational force.

(II.9)
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the gravity potential 
of two infinitely close 
gravity equipotential 
surfaces.

By assuming a spher-
ical, homogeneous, 
non-rotating Earth, we 
can derive its potential 
field from Equation 
(II.9), and denoting |r| by r:

The constant of integration in Equation (II.10) 
can be chosen so that zero potential resides either 
infinity far away or at the center of M. We choose 
the former convention. Consequently, potential 
increases in the direction that gravity force vectors 
point and the absolute potential of an object of 
mass m located a distance h from M is:

We now reconsider the definition of the geoid, 
being the equipotential surface of the Earth’s 
gravity field that nominally defines mean sea 
level. From Equation (II.10), the geoid is some 
particular value of U and, furthermore, if the 
Earth were spherical, homogeneous, and not 
spinning, the geoid would also be located at 
some constant distance from the Earth’s center 
of gravity. However, none of these assumptions 
are correct, so the geoid occurs at various dis-
tances from the Earth’s center—it undulates.

One can prove mathematically that Eg is per-
pendicular to U. To illustrate this, see Figure 
II.8. The figure shows the force vectors as seen in 
Figure II.6 but superimposed over the potential 
field computed using Equation (II.10) instead 
of the magnitude of the force field. Notice that 
the vectors are perpendicular to the isopotential 
lines. Water would not flow along the isopoten-
tial lines; only across them. In three dimensions, 

the isopotential lines would be equipotential 
surfaces, such as the geoid.

The Shape of the Geoid
We now consider the shape of the geoid as it 
occurs for the real Earth. It is evident from 
Equation (II.10) that the equipotential surfaces 
of a spherical, homogeneous, non-rotating mass 
would be concentric, spherical shells—much like 
layers of an onion. If the sphere is very large, 
such as the size of the Earth, and we examined 
a relatively small region near the surface of the 
sphere, the equipotential surfaces would almost 
be parallel planes.  

Now, suppose we add some mass to the sphere 
in the form of a point mass roughly equal to 
that of Mt. Everest positioned on the surface 
of the sphere. The resulting gravity force field 
and isopotential lines are shown in Figure II.9. 
The angles and magnitudes are exaggerated 
for clarity; the deflection of the vertical is very 
apparent. In particular, we draw attention to the 

Figure II.7. The force experienced by a bubble due to water pressure. Horizontal lines 
indicate surfaces of constant pressure, with sample values indicated on the side.

Figure II.8. The gravity force vectors created by a unit 
mass and the corresponding isopotential field lines. 
Note that the vectors are perpendicular to the field lines. 
Thus, the field lines extended into three dimensions con-
stitute level surfaces.

(II.10)

(II.11)
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shape of the isopotential lines which run more-
or-less horizontally across the figure. Notice how 
they bulge up over the mountain. This is true 
in general: the equipotential surfaces roughly 
follow the topographic shape of the Earth in 
that they bow up over mountains and dip down 
into valleys. Also, any one of the geopotential 
lines shown in Figure II.9 can be thought of as 
representing the surface of the ocean above an 
underwater seamount. Water piles up over the 
top of subsurface topography to exactly the 
degree that the mass of the additional water 
exactly balances the excess of gravity caused by 
the seamount. Thus, one can indirectly observe 
seafloor topography by measuring the depar-
ture of the ocean’s surface from nominal gravity 
(Hall 1992). The geoid, of course, surrounds 
the Earth, and Figure II.10 shows the ellip-

soid height of the geoid with 
respect to NAD 83 over the 
conterminous United States 
as modeled by GEOID03 
(Roman et al.  2004). At first 
glance, one could mistake the 
image for a topographic map. 
However, closer examination 
reveals numerous differences.

Geopotential 

Numbers
The geoid is usually considered 
the proper surface from which 
to reckon geodetic heights 
because it honors the flow of 
water and nominally resides at 

mean sea level. Sea level, itself, does not exactly 
match the geoid because of the various physical fac-
tors mentioned before. Therefore, actually finding 
the geoid in order to realize a usable vertical datum 
is currently not possible from mean sea level mea-
surements. Ideally, one would measure potential 
directly in some fashion analogous to measuring 
gravity acceleration directly. If this were possible, 
the resulting number would be a geopotential number. 
In other words, a geopotential number is the poten-
tial of the Earth’s gravity field at any point in space. 
Using geopotential numbers as heights is appeal-
ing for several reasons:
• Geopotential defines hydraulic head. Therefore, 

if two points are at the same geopotential number, 
water will not flow between them due to gravity 
alone. Conversely, if two points are not at the 
same geopotential number, gravity will cause 
the water to flow between them if the waterway 
is unobstructed (ignoring friction). 

• Geopotential decreases linearly with distance 
from the center of the Earth (Equation (II.10)). 
This makes it a natural measure of distance.

• Geopotential does not depend on the path 
taken from the Earth’s center to the point of 
interest. This makes a geopotential number 
stable.

• The magnitude of a geopotential number is 
less important than the relative values between 
two places. Therefore, one can scale geopo-
tential numbers to any desirable values, such 
as defining the geoid to have a geopotential 
number of zero. 
Equation (II.11) gives hope of determining 

height by measuring a gravity-related quantity, 

Figure II.9. The gravity force vectors and isopotential lines created at the Earth’s 
surface by a point with mass roughly equal to that of Mt. Everest. The single 
heavy line is a plumb line.

Figure II.10. GEOID03 local geoid model for the conter-
minous United States. From Roman et. al (2004).
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namely, absolute potential. Regrettably, poten-
tial cannot be measured directly. This is under-
standable because the manifestation of potential 
(the force of gravity) is created by potential 
differences, not in the potential itself. That is, 
two pairs of potential energies, say (150, 140) 
and (1000, 990) result in a force of the same 
magnitude. This is true because the difference 
of the two pairs is the same, namely, 10 new-
tons. In light of this, one might ask how images 
of the geoid, such as Figure (II.10), came into 
being. The image in Figure (II.10) is the result 
of a sophisticated mathematical model based on 
Stokes’ formula, which we take from Heiskanen 
and Moritz’ (1967, p. 94) equation 2-163b, and 
present here for completeness:

where: 
N = geoid height at a point of interest;
R = mean radius of the Earth;
G = the universal gravitational constant;
σ = the surface of the Earth;
∆g= the reduced, observed gravity measure-
        ments around the Earth;
ψ  = the spherical distance from each surface
         element dσ to the point of interest, and
S(ψ), which is known as Stokes’ function, given 
by Heiskanen and Moritz’ (1967, p. 94) equa-
tion 2-164:

 

The model is calibrated with, and has bound-
ary conditions provided by, reduced gravity 
measurements taken in the field—the ∆g’s in 
Equation (II.12). These measurements together 
with Stokes’ formula permit the deduction of the 
potential field that must have given rise to the 
observed gravity measurements.

 In summary, in spite of their natural suit-
ability, geopotential numbers are not practical 
to use as heights because practicing surveyors 
cannot easily measure them in the field.4 They 
are, however, the essence of what the word height 
really means, and subsequent papers in this 
series will come to grips with how orthometric 
and ellipsoid heights are related to geopoten-

tial numbers by introducing Helmert orthometric 
heights and dynamic heights.

Summary
This second paper in a four-part series that 
reviews the fundamental concept of height pre-
sented simple derivations of the physics con-
cepts needed to understand the force of gravity, 
since mean sea level and the Earth’s gravity field 
are strongly interrelated. It was shown that one 
cannot use the magnitude of the force of grav-
ity to define a vertical datum because equiforce 
surfaces are not level surfaces. However, it was 
observed that gravity potential gives rise to 
gravity force and, furthermore, gravity force is 
normal to equipotential surfaces. The practi-
cal consequence of this is that water will not 
flow along an equipotential surface due to the 
force of gravity alone. Therefore, equipotential 
surfaces are level surfaces and suitable to define 
a vertical datum. In particular, although there 
is an infinite number of equipotential surfaces, 
the geoid is often chosen to be the equipotential 
surface of the Earth’s gravity field that best fits 
mean sea level in a least squares sense, and the 
geoid has thus become the fundamental verti-
cal datum for mapping. It was shown that mean 
sea level itself is not a level surface, therefore, 
one cannot deduce the location of the geoid 
by measuring the location of mean sea level 
alone. Furthermore, one cannot measure grav-
ity potential directly. Therefore, we model the 
geoid mathematically, based on gravity observa-
tions.

A geopotential number was defined to be a 
number proportional to the gravity potential 
at that place. Geopotential numbers capture 
the notion of height exactly because they vary 
linearly with vertical distance and define level 
surfaces. However, they are usually unsuitable 
for use as distances themselves because they 
cannot be measured directly and have units of 
energy rather than length.
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