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Abstract
Numerous animal models have been used to study diet effects on cholesterol and lipoprotein
metabolism. However, most of those models differ from humans in the plasma distribution of
cholesterol and in the processing of lipoproteins in the plasma compartment. Although transgenic
or knock-out mice have been used to study a specific pathway involved in cholesterol metabolism,
these data are of limited use because other metabolic pathways and responses to interventions may
differ from the human condition.

Carbohydrate restricted diets have been shown to reduce plasma triglycerides, increase HDL
cholesterol and promote the formation of larger, less atherogenic LDL. However, the mechanisms
behind these responses and the relation to atherosclerotic events in the aorta have not been
explored in detail due to the lack of an appropriate animal model. Guinea pigs carry the majority
of the cholesterol in LDL and possess cholesterol ester transfer protein and lipoprotein lipase
activities, which results in reverse cholesterol transport and delipidation cascades equivalent to the
human situation. Further, carbohydrate restriction has been shown to alter the distribution of LDL
subfractions, to decrease cholesterol accumulation in aortas and to decrease aortic cytokine
expression. It is the purpose of this review to discuss the use of guinea pigs as useful models to
evaluate diet effects on lipoprotein metabolism, atherosclerosis and inflammation with an emphasis
on carbohydrate restricted diets.

Background
The use of appropriate animal models to determine the
effects of dietary interventions on metabolic process and
gene expression regulating cholesterol and lipoprotein
metabolism is essential to understand the mechanisms
underlying the reported effects on plasma lipids. In our
previous reviews, we have shown the suitability of guinea
pigs to study alterations on cholesterol and lipoprotein
metabolism induced by diet [1] and by drug treatment
[2]. More recent studies in this animal model evaluating

diet-induced atherosclerosis [3,4], and dietary effects on
alterations in the morphology and concentration of spe-
cific lipoprotein subfractions [5] add support to the
appropriateness of this model.

The most striking similarity between guinea pigs and
humans is that the majority of circulating cholesterol is
transported in LDL [6]. Other rodents present major dif-
ferences in lipoprotein cholesterol distribution and even
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genetic manipulations result in dissimilar lipoprotein
profiles when compared to humans (Figure 1).

Other key points supporting the use of guinea pigs as
models for human cholesterol and lipoprotein metabo-
lism include: 1. Higher concentrations of free compared
to esterified cholesterol in the liver [7] as shown in reports
from clinical studies [8]. 2. In contrast to other rodents
[9], guinea pigs possess plasma cholesteryl ester transfer
protein (CETP) activity [10], a critical component for
human reverse cholesterol transport [11]. 3. Guinea pigs
also have lecithin:cholesterol acyltransferase (LCAT) [12],
and lipoprotein lipase (LPL) [13] activities that contribute
to remodeling of plasma lipoproteins, which results in the
formation of lipoprotein subclasses with different mor-
phologies and physiologic functions including their role
in lipid accumulation in the aorta and development of the
atherosclerotic plaque; 4. Comparable to humans [14,15],
guinea pigs exhibit moderate rates of hepatic cholesterol
synthesis [16] and catabolism [17]. 5. Similar to humans,
the binding domain for the LDL receptor differentiates
between normal and familial binding defective apo B-100
[18]. 6. Apo B mRNA editing in liver is present in negligi-
ble amounts (< 1%) compared to 18 to 70% in other spe-
cies [19]; 7. Guinea pigs require dietary vitamin C [20], an
important anti-oxidant that may play a role in oxidation
and atherosclerosis. 8. Females have higher HDL levels
than males and ovariectomized guinea pigs have a plasma
lipid profile similar to post-menopausal women [21]. 9.
In response to exercise, guinea pigs lower plasma triglyc-
erides (TG) and increase plasma HDL cholesterol (HDL-
C) [22]. 10. Guinea pigs respond to dietary fat saturation
[23], dietary cholesterol [24] and dietary fiber [25] by
alterations in LDL cholesterol. 11. In contrast to hamsters

they do not possess a fore-stomach, which ferments fiber
before reaching the small intestine [26]. 12. It has also
been shown that guinea pigs are good models for studying
the mechanisms by which statins [27], cholestyramine
[28], apical sodium bile acid transport (ASBT) inhibitors
[29] lower plasma LDL cholesterol. More recently, we
have demonstrated that guinea pigs can also be used to
study the mechanisms by which certain drugs affect trig-
lyceride metabolism [30,31]

Guinea pigs and dietary interventions
Dietary fat saturation
The clarification of some of the mechanisms by which die-
tary fatty acids alter plasma cholesterol concentrations
and lipoprotein metabolism comes from the use of ani-
mal models [32,33]. Guinea pigs have been used as mod-
els to elucidate the mechanisms by which dietary fat
saturation influences plasma lipids. They have lower
plasma LDL cholesterol when the diet is rich in polyunsat-
urated fatty acids (PUFA) compared to saturated fat (SFA)
intake [34]. We demonstrated that plasma cholesterol
lowering was due to the up-regulation of the LDL receptor
by PUFA and decreased conversion of VLDL to LDL [23].
In addition, we evaluated fatty acid chain length on
hepatic cholesterol and lipoprotein metabolism. Stearic
acid (18C) intake resulted in lower plasma cholesterol
concentrations, palmitic acid (16) in an intermediate
value and a diet rich in lauric (12C) and myristic (14C)
acids had the greatest hypercholesterolemic effect [35].
The hypercholesterolemic effects of lauric/myristic were
due to increased production/formation of VLDL associ-
ated with higher hepatic acyl CoA cholesteryl:acyltrans-
ferase (ACAT) activity [36] and to decreased plasma LDL
turnover [35] associated with a lower number of LDL
receptors determined in hepatic membranes calculated by
Maximal binding (Bmax) [34].

Dietary fiber
Many studies have been conducted in guinea pigs to
understand the secondary mechanisms by which dietary
fiber lowers plasma LDL cholesterol [17,37,38]. Soluble
fiber disrupts the enterohepatic circulation of bile acids by
interfering with micelle formation in the intestinal lumen
and increasing bile acid output. Decreases in cholesterol
absorption have also been observed with intake of pectin
(a source of soluble fiber) [25]. Since the recycling of bile
acids is tightly regulated, the liver needs to synthesize
more bile acids via hepatic cholesterol resulting in the up-
regulation of cholesterol 7α-hydroxylase (CYP7), the reg-
ulatory enzyme of bile acid synthesis. As a result of the
decrease in hepatic cholesterol, HMG-CoA reductase, the
rate limiting and regulatory enzyme for cholesterol bio-
synthesis is up-regulated [17,25] and in addition, the LDL
receptor is up-regulated to remove cholesterol from circu-
lation [25]. These series of events result in the lowering of

Comparisons between Lipoprotein Cholesterol Distribution between several animal models and humansFigure 1
Comparisons between Lipoprotein Cholesterol Distribution 
between several animal models and humans.

0%

20%

40%

60%

80%

100%

Rat

M
ouse

Ham
ste

r

Rabbit

CETP tr
ang

ApoB-K
O

G
uin

ea P
ig

Hum
an

VLDL LDL HDL 



Nutrition & Metabolism 2006, 3:17 http://www.nutritionandmetabolism.com/content/3/1/17

Page 3 of 6
(page number not for citation purposes)

LDL cholesterol. Other mechanisms contributing to the
lowering of LDL-C by fiber intake include decreases in
ACAT activity [17,35], leading to a formation of a choles-
teryl ester depleted VLDL, which does not get converted to
LDL but is rather promptly removed from circulation by
the LDL receptor [39].

Dietary cholesterol
Similar to humans [40], guinea pigs experience different
responses to dietary cholesterol by which we could clas-
sify them as hyper- or hypo-responders [41]. Increasing
dietary cholesterol results in accumulation of hepatic cho-
lesterol and increased plasma cholesterol concentrations.
One of the first mechanisms by which guinea pigs handle
the excess of hepatic cholesterol is by suppressing HMG-
CoA reductase activity. Decreases in LDL receptor in
hepatic membranes has also been observed.

Guinea pig and drug treatments
Reductase inhibitors
Guinea pigs are good models for the study of HMG-CoA
reductase inhibitors. They experience significant decreases
in LDL cholesterol even at the lowest doses [27]. Atorvas-
tatin, a well known HMG-CoA reductase inhibitor lowers
LDL cholesterol by decreasing apo B secretion from the
liver, which leads to less conversion of VLDL to LDL [27].
In addition LDL size is significantly modified by atorvas-
tatin. Increases in in vivo LDL turnover due to atorvastatin
and simvastatin treatment has also been observed [42].
The mechanisms by which lovastatin lowers LDL-C were
evaluated in guinea pigs [43] and found to be similar to a
later report in humans [44]

Other drugs affecting LDL metabolism
Guinea pigs have also been shown to decrease LDL-C with
apical sodium bile acid transporters (ASBT) inhibitors by
interrupting the recycling of bile acids and increasing fecal
bile acid ouptut [45]. Cholestyramine has also been
shown to significantly reduce LDL-C in guinea pigs
[28,46]. Specific changes in LDL particle associated with
faster LDL catabolic rate have been proposed as one of the
mechanisms by which cholestyramine exerts its hypocho-
lesterolemic effect [44]. Other drugs such as microsomal
transfer protein (MTP) inhibitors [31] have also been
shown to decrease plasma LDL-C.

Drugs affecting triglyceride metabolism
Recently we have shown that guinea pigs also respond to
drugs known to affect TG metabolism in humans. One of
them is the MTP inhibitor, which was shown to reduce
plasma TG without increasing hepatic lipid accumulation.
[30] Also, rapamycin, a mammalian target of rapamycin
(mTOR) inhibitor, prescribed to organ transplant patients
is known to induce hypertriglyceridemia. We observed
significant increases in plasma TG in guinea pigs treated
with low and moderate doses of rapamyin for 3 wk.[31]

Models for atherosclerosis and inflammation
In addition to the responses on plasma lipids due to a die-
tary intervention or drug treatment, a suitable animal
model should be able to develop atherosclerosis, the ulti-
mate outcome of extended hypercholesterolemia or from
circulating atherogenic lipoproteins. We have shown that
guinea pigs develop atherosclerosis and that gender and
hormonal status affect the extent of the atherosclerotic
plaque [47]. More recently we have shown that high cho-
lesterol diets induce aortic cholesterol accumulation and
that certain dietary components or drug treatment can
reduce concentrations of cholesterol in the aorta even in
the presence of very high dietary cholesterol [43,48].

Atherosclerosis is no longer simply viewed as a disease of
cholesterol accumulation in the arterial wall, but rather as

Gene expression (A) and Protein levels (B) of several inflam-mation markers in aortic tissues of guinea pigs (mean ± SEM, n = 10 guinea pigs per group) fed either a low (12% energy) or a high (40% energy) carbohydrate containing 0.25% cho-lesterolFigure 2
Gene expression (A) and Protein levels (B) of several inflam-
mation markers in aortic tissues of guinea pigs (mean ± SEM, 
n = 10 guinea pigs per group) fed either a low (12% energy) 
or a high (40% energy) carbohydrate containing 0.25% cho-
lesterol.
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a process that involves low-grade vascular inflammation
in all stages. Given the critical nature of inflammation, an
ideal animal model of atherosclerosis should resemble
the human disease both in terms of cholesterol metabo-
lism and the inflammatory process. We have validated the
guinea pig as a model to study the inflammatory compo-
nent of diet-induced atherosclerosis. We measured proin-
flammatory cytokine protein and mRNA expression in the
aortas of guinea pigs fed high-cholesterol diets either high
or low in carbohydrate for 12 wk. We observed a signifi-
cant increase in aortic cytokines in guinea pigs fed high
cholesterol compared to low cholesterol diets (unpub-
lished results). When we compared aortic protein concen-
trations of interferon (IFN)-γ, tumor necrosis factor
(TNF)-α, and interleukin 6 (IL-6), we found that carbohy-
drate restriction decreased TNF-α gene expression (Fig 2A)
and protein (Fig 2B). We used real-time primers for
guinea pig IFN-γ, TNF-α, IL-1β, IL-8, and MCP-1 and
quantitative real-time PCR. Thus, we clearly showed an
atherogenic inflammatory process in guinea pigs fed high-
cholesterol as quantified by both protein and mRNA
expression. We also demonstrated that macronutrient
composition may alter inflammatory responses.

Guinea pigs as models for the study of carbohydrate 
restricted diets
Lipoprotein subclasses
Carbohydrate restriction has been shown to alter triglycer-
ide metabolism [49]. One major effect of carbohydrate
restriction on lipoprotein metabolism is the formation of
larger more buoyant LDL particles typical of pattern A the

less atherogenic form [50]. Small dense LDL particles clas-
sified as pattern B are associated with a much higher risk
for cardiovascular disease [51], thus this important feature
of carbohydrate restriction in increasing the size of LDL is
quite beneficial, specifically for patients with the meta-
bolic syndrome and type II diabetes, which have a pre-
dominance of pattern B LDL particles. We have shown in
guinea pigs that the distribution of LDL particles as meas-
ured by nuclear magnetic resonance shifts to larger LDL
when guinea pigs are fed a low carbohydrate (12%
energy) versus a high carbohydrate (40% energy) diet
(52) (Figure 3).

Carbohydrate restriction and cytokines and aortic cholesterol 
accumulation
Because carbohydrate restriction decreases the number of
small LDL in guinea pigs [52], we speculate that there is
less penetration of LDL particles through the arterial wall.
Because of the unregulated uptake of cholesterol by mac-
rophages, foam cell formation is increased in the presence
of oxidized LDL in the intima [53]. These foam cells are
responsible for the activation of T cells and B cells, which
promote the secretion of cytokines [54]. Thus it is not sur-
prising to observe a decreased cytokine protein and
mRNA abundance in aortas of guinea pigs fed a high ver-
sus a low carbohydrate diet (Fig. 2). Another important
observation was that guinea pigs fed the CRD had less
accumulation of cholesteryl ester in the aorta supporting
our observation that the higher concentrations of smaller
LDL (as produced by the high carbohydrate diet) may
result in higher cholesterol accumulation in aorta. These
findings suggest that carbohydrate restriction effects on
plasma lipoproteins have a direct impact on inflamma-
tion and atherosclerosis in guinea pigs. We have studies
underway to confirm these findings and provide addi-
tional insight into the mechanisms by which carbohy-
drate restriction affects lipoprotein and inflammatory
aspects of atherosclerosis in guinea pigs.

Conclusion
In this review, we have demonstrated that guinea pigs are
excellent models to evaluate the mechanisms by which
diet interventions and drug treatments alter plasma lipids
and lipoprotein metabolism. Further, we have shown that
guinea pigs have an inflammatory response and develop
atherosclerosis when challenged with a high cholesterol
diet and that diet treatment (as in the case of carbohydrate
restriction) may prove to be beneficial in reducing the
expression of inflammatory cytokines and atherosclerosis
development. Further the guinea pig is proposed to evalu-
ate in depth the metabolic alterations induced by CRD,
which substantially improve plasma lipid profiles

Concentration of plasma total number of LDL particles and smaller LDL subfractions guinea pigs (mean ± SEM, n = 10 guinea pigs per group) fed either a low (12% energy) or a high (40% energy) carbohydrate containing 0.25% cholesterolFigure 3
Concentration of plasma total number of LDL particles and 
smaller LDL subfractions guinea pigs (mean ± SEM, n = 10 
guinea pigs per group) fed either a low (12% energy) or a 
high (40% energy) carbohydrate containing 0.25% choles-
terol. ** significantly different (P < 0.001)
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Abbreviations
ACAT: acyl CoA cholesteryl acyltransferase, Apo: apolipo-
protein; Bmax: Maximal binding, ASBT: apical sodium bile
acid transporters; CE: cholesteryl ester; CETP: cholesterol
ester transfer protein; CETP transg: CETP transgenic;CRD:
carbohydrate restricted diets; CYP7: Cholesterol 7α-
hydroxylase; FC: free cholesterol; GM-CSF: granulocyte-
macrophage colony stimulatory factor; HDL-C: HDL-cho-
lesterol, HMG-CoA: 3-hydroxy-3-methylglutaryl coen-
zyme A; IL-6: interleukin 6, INF: interferon; LDL-C: LDL
cholesterol; LCAT: lecithin-cholesterol acyltransferase;
LPL: lipoprotein lipase; MONO: monounsaturated;
mTOR: mamamalian target of rapamycin, MTP: micro-
somal transfer protein PUFA: polyunsaturated; SAT: satu-
rated; TG: triglycerides; TNF-α: tumor necrosis factor
alpha; VLDL-C: VLDL cholesterol
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