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Genes for the Major Structural Components of
Thermotogales Species’ Togas Revealed by Proteomic
and Evolutionary Analyses of OmpA and OmpB
Homologs
Amanda K. Petrus1, Kristen S. Swithers1, Chaman Ranjit1, Si Wu2, Heather M. Brewer2, J. Peter Gogarten1,

Ljiljana Pasa-Tolic2, Kenneth M. Noll1*

1 Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America, 2 Environmental Molecular Sciences Laboratory,

Pacific Northwest National Laboratory, Richmond, Washington, United States of America

Abstract

The unifying structural characteristic of members of the bacterial order Thermotogales is their toga, an unusual cell
envelope that includes a loose-fitting sheath around each cell. Only two toga-associated structural proteins have been
purified and characterized in Thermotoga maritima: the anchor protein OmpA1 (or Ompa) and the porin OmpB (or Ompb).
The gene encoding OmpA1 (ompA1) was cloned and sequenced and later assigned to TM0477 in the genome sequence,
but because no peptide sequence was available for OmpB, its gene (ompB) was not annotated. We identified six porin
candidates in the genome sequence of T. maritima. Of these candidates, only one, encoded by TM0476, has all the
characteristics reported for OmpB and characteristics expected of a porin including predominant b-sheet structure, a
carboxy terminus porin anchoring motif, and a porin-specific amino acid composition. We highly enriched a toga fraction of
cells for OmpB by sucrose gradient centrifugation and hydroxyapatite chromatography and analyzed it by LC/MS/MS. We
found that the only porin candidate that it contained was the TM0476 product. This cell fraction also had b-sheet character
as determined by circular dichroism, consistent with its enrichment for OmpB. We conclude that TM0476 encodes OmpB. A
phylogenetic analysis of OmpB found orthologs encoded in syntenic locations in the genomes of all but two Thermotogales
species. Those without orthologs have putative isofunctional genes in their place. Phylogenetic analyses of OmpA1 revealed
that each species of the Thermotogales has one or two OmpA homologs. T. maritima has two OmpA homologs, encoded by
ompA1 (TM0477) and ompA2 (TM1729), both of which were found in the toga protein-enriched cell extracts. These
annotations of the genes encoding toga structural proteins will guide future examinations of the structure and function of
this unusual lineage-defining cell sheath.
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Introduction

The Thermotogales is an order of bacteria defined by a unique

outer envelope called the ‘‘toga’’ [1]. This unconventional

structure balloons out at the poles of the cells forming a

pronounced periplasmic space [2,3]. This envelope not only

serves as a barrier to the external milieu, but also provides a

structure for the organization of polysaccharide hydrolases

exposed on the cell surface, allowing the utilization of insoluble

carbon sources [4,5].

Although Thermotoga maritima was the first hyperthermophilic

bacterium discovered, very little is known about the composition

of its toga [5]. Of the hydrolytic enzymes isolated from T. maritima,

an amylase (AmyA, TM1840) and a xylanase (XynA, TM0061)

have been definitively associated with the toga [4,5]. Only two

other proteins, OmpA1 (previously called Ompa) [6,7] and OmpB

(previously called Ompb) [3], have been conclusively found to be

within the toga fraction.

The chemical nature and protein composition of the outer

envelope, or toga, of species of the Thermotogales remains poorly

studied. Since these organisms stain Gram-negative, it is

commonly concluded that they must have features of Gram-

negative proteobacteria like Escherichia coli. However, the Gram

reaction only provides general information about the character of

cell envelopes, and does not provide sufficient clues about the

chemical or protein composition of organisms distantly related to

the proteobacteria to allow direct comparisons to be made

between members of such lineages [8,9]. The problem is
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exacerbated when the nomenclature of envelope elements used

with different organisms overlaps, but does not correspond, as with

E. coli and T. maritima.

In E. coli, the OmpA porin protein is one element that links the

outer membrane to the peptidoglycan [10]. It is embedded in the

outer membrane by N-terminal antiparallel b-strands and has a C-

terminal periplasmic domain bound to the peptidoglycan,

apparently in a non-covalent manner [11].

In T. maritima, OmpA1 plays a physiological role similar to that

of the E. coli OmpA except that OmpA1 is not a porin. Though

they have similar names, the two proteins are neither evolution-

arily nor structurally related. T. maritima OmpA1 is a 45.3 kDa

rod-shaped spacer protein that serves to anchor the toga to the cell

body, probably at the peptidoglycan layer [6,7]. Its N-terminus

contains an S-layer homology (SLH) domain that likely anchors it

to the peptidoglycan or a similar saccharide layer in the envelope

[6,7]. A 316 amino acid alpha helical coiled coil region follows that

serves to separate the toga from the cytoplasmic membrane by

,50 nm, except where the toga balloons away from the

membrane. OmpA1 appears to remain associated with OmpB

in the portion of the toga that peels away from the cytoplasmic

aspect of cells during growth. A C-terminus of ,20 hydrophobic

amino acids may anchor OmpA1 in the toga.

T. maritima OmpB was described as a 42 kDa porin that likely

constitutes the largest fraction of the toga protein content [3].

Freeze etching images of the surface of T. maritima cells showed

triangular orifices regularly arrayed across the entire surface of the

toga with a p3 lattice of 11 nm, a motif and dimension common to

E. coli porins [3]. Imaging of purified cell sheaths showed that

OmpB forms trimers very similar to those of the E. coli porin

OmpF. E. coli has no OmpB protein. Instead ompB designates a

genetic locus that encodes OmpR and EnvZ, two proteins that

control expression of the porins OmpC and OmpF in response to

different environmental signals.

To date, only three toga proteins (the amylase TM1840,

xylanase TM0061 and OmpA1 TM0477) have been successfully

annotated in the T. maritima genome sequence through cloning

and sequencing of their genes [4–6,12,13]. Using N-terminal

sequence derived from the purified native OmpA1 protein, its

gene was cloned and sequenced [6,7] so that when the T. maritima

genome was sequenced the ORF encoding OmpA1 could be

assigned [14]. OmpA1 is encoded by TM0477 in the T. maritima

genome sequence. OmpB, the major constituent of the toga, was

purified in 1990, but no amino acid or nucleotide sequence data

were able to be gathered [3], so the gene encoding it has yet to be

identified in the genome sequence. This lack of annotation has

hampered studies of the evolution of toga proteins and compar-

ative analyses of toga proteins across the Thermotogales lineage.

We sought to identify the gene encoding OmpB by sequencing

the proteins present in purified toga-sheath fractions. We sought

further support for the gene assignment using bioinformatic

structural and phylogenetic analyses of the OmpB candidates in

the genome sequences of T. maritima and its relatives. This

examination produced a catalog of toga-associated proteins,

identified the gene encoding OmpB, and revealed a new class of

OmpA homologs.

Results

The T. maritima Genome Sequence has Six Porin
Candidates

The genome sequence of T. maritima was examined for genes

likely to encode the OmpB porin [14]. Six porin candidates were

identified by meeting at least three of the following criteria: (1) the

reported size of OmpB (approximately 42 kDa), (2) a signal

sequence to allow export, (3) likely b-sheet content within the

range of known porins, (4) globularity, and (5) a characteristic

porin carboxy terminus (see description below) (Table 1). These

loci were TM0153, TM0354, TM0476, TM0639, TM0642, and

TM1274.

To compare the structural characteristics of the candidate

proteins with those of known porins, the T. maritima porin

candidates and five bacterial porin sequences were analyzed using

STRAP and SCRATCH protein prediction software. The

bacterial porins were found to have b-strand contents ranging

from 17.77–29.16% (STRAP) and 22–36% (SCRATCH)

(Table 1). TM0476 has a calculated b-strand content of 26.07%

and 22%, falling within both ranges. Though the b-strand

contents of candidates TM0153 and TM0642 also fall within

Table 1. Characteristics of porin candidates from T. maritima as compared to those of known porins.

Protein/ORF*
Molecular Weight
(kD) Signal peptide b Strand content (%){ Globularity Porin C-terminus

OmpCE 40.38 + 29.16/33 + +

OmpFEc 39.36 + 28.45/33 + +

PhoEEc 38.93 + 23.93/36 + +

ScrYSe 55.11 + 18.42/22 + +

ScrYYe 56.70 + 17.77/24 + +

TM0153 70.74 – 23.11/23 + +

TM0354 49.11 + 12.14/15 + –

TM0476 44.90 + 26.07/22 + +

TM0639 45.60 + 35.00/30 + –

TM0642 29.63 – 29.06/23 + +

TM1274 27.09 + 43.27/38 + +

Characteristics are defined in the text. Legend: +, protein is predicted to possesses the attribute; –, protein is predicted to not possess the attribute.
*Proteins are Escherichia coli OmpC, OmpF, PhoE; Salmonella enterica ScrY; and Yersinia enterocolitica ScrY. ORFs are from TM, T. maritima. { Percent b strand content
calculated utilizing the multisequence alignment programs STRAP and SCRATCH, respectively.
doi:10.1371/journal.pone.0040236.t001
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both ranges, they each lack a signal peptide and are not the

appropriate molecular weight for OmpB (Table 1).

Only the product of TM0476 possesses all the expected

characteristics of a porin. The product of TM0476 is a 417

amino acid protein, with a molecular weight of 44.87 kDa. Its

sequence contains a signal peptide marking the protein for export.

Other characteristics of the TM0476 product are consistent with it

being OmpB. It is predicted to be globular, suggesting the

possibility for oligomerization.

The location of TM0476 in the genome is also consistent with

this assignment. TM0476 is adjacent to ompA1 (TM0477), the

ORF encoding OmpA1, and is transcribed in the same direction.

These genes appear to be in an operon, as shown by the ProOpDB

database [15]. Together these characteristics support the identi-

fication of TM0476 as the gene encoding OmpB (ompB).

The Amino Acid Sequence and Composition of OmpB
(TM0476) Showed Features of Known Porins

As porins possess little sequence similarity across species, they

are difficult to identify using sequence alignment comparisons

[16], but conserved characteristic sequence features can be utilized

to predict porin identities. Amino acid composition, trimeric

channel structure, N- and C-terminal sequences, and amino acid

content are conserved across large evolutionary distances. A C-

terminal phenylalanine residue is essential for the anchoring of

porins to the cell surface [17,18]. However, E. coli OmpA is an

exception as it lacks this feature and its C-terminus is in the

periplasm [17,18]. The last ten C-terminal amino acids of typical

porins contain hydrophobic residues at positions 1, 3, 5, 7 and 9

and these are also essential for anchoring them in the outer

membrane [17,18]. A comparison of the C-terminal amino acids

of OmpB with known porins shows that it has a terminal

phenylalanine as well as hydrophobic residues at positions 1, 3, 5,

7, and 9 (Table 2). A hydropathy plot of the sequence of OmpB

(not shown) shows its C-terminus forms a transmembrane

hydrophobic anchor like that of Gram-negative bacterial porins

which have amphipathic beta strands composed of hydrophobic

residues at C-terminal positions 1, 3, 5, 7, and 9 [17,18].

Porins also have a distinct amino acid composition with low

percentages of Arg, Cys, Glu, His, Ile, Met, Pro, and Trp and high

percentages of Ala, Gly, Asn, Asp, and Leu [16]. TM0476 has low

levels of Cys, Pro, His and Met and high levels of Asn, Asp, and

Gly. The composition of OmpB of T. maritima is comparable to

that of OmpC and OmpF of E. coli.

Putative OmpB was Identified within Toga Fractions
Collected by Sucrose Gradient Ultracentrifugation

To experimentally demonstrate which ORF is ompB, we set out

to purify the native porin protein described by Rachel et al. [3]

using comparable methods and then determine the protein’s

sequence to identify its gene in the genome sequence. Rachel et al.

reported that toga sheath material can be collected by gradient

centrifugation and that the resulting protein fractions contain

protein complexes with apparent Mr values .100 kDa as

determined by SDS gel electrophoresis [3]. These oligomers were

identified as OmpA1 and OmpB and were found to dissociate into

their respective monomers of 40–45 kDa after heat treatment (for

an unreported amount of time) in 2% SDS prior to SDS-PAGE

[3].

To obtain toga proteins, we resolved a membrane pellet using

sucrose density gradient ultracentrifugation. SDS-PAGE analysis

of fractions collected from the sucrose gradient displayed several

protein bands in the 50–65% sucrose fractions (the ‘‘toga

fractions,’’ fractions 15–21) including bands within the range of

interest (100 to 250 kDa) (not shown).

A representative sucrose gradient fraction from the ‘‘toga

fractions,’’ fraction 18, was selected to locate OmpB within the

outer envelope fraction. Fraction 18 was resolved by SDS-PAGE

and nine bands were excised and submitted for LC/MS/MS

analysis (Fig. S1). A large number of proteins of different sizes were

detected in each band, a result not surprising for LC/MS/MS

analyses of gel bands as discussed in more detail below. In

addition, contrary to the observations of Rachel, et al [3], we

observed that our envelope protein preparations were incomplete-

ly denatured by boiling the samples in 2.5% SDS for 5 min, so

that a number of proteins apparently co-migrated on SDS gels.

The putative OmpB (TM0476) was detected in this sample.

Experimentally demonstrated toga proteins including OmpA1

(TM0477) and XynA (TM0061) were also present in the bands

providing proof that the predicted OmpB, TM0476, is located in

the outer envelope.

An OmpB-like Trimer was Further Purified from Enriched
Toga Material by Hydroxyapatite Chromatography

The presumed toga fractions (the 50–65% sucrose fractions 15–

21) were pooled for further purification of OmpB by hydroxyap-

atite chromatography. OmpB has been shown to possess an

affinity for hydroxyapatite, with the OmpB porin eluting at

approximately 200 mM phosphate [2,6]. Fig. S2, panel A shows a

preparative SDS-PAGE analysis of fractions eluted from a

hydroxyapatite column loaded with the pooled sucrose density

gradient toga fractions 15–21. Fractions 6–8 of the hydroxyapatite

Table 2. The C-terminal amino acids of TM0476 are like those of several confirmed porins.

C-terminal amino acids (N R C)

Protein 10 9 8 7 6 5 4 3 2 1

TM0476 (T. maritima) Y L Y L K A S V A F

PhoE (S. enterica) I V A I G L T Y Q F

PhoE (E. coli) I V A V G M T Y Q F

OmpF (E. coli) T V A V G I V Y Q F

OmpC (E. coli) I V A L G L V Y Q F

Position 1 indicates the C-terminal amino acid. Hydrophobic residues are boldface. All porins shown possess the essential terminal phenylalanine and hydrophobic
residues at positions 3, 5, 7 and 9.
doi:10.1371/journal.pone.0040236.t002
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column eluate contain a band of approximately150 kDa that is

relatively isolated and this size is consistent with the elution

characteristics of the trimer form of OmpB [3]. When the column

fractions were treated with stronger denaturing conditions [1%

octyl-polyoxyethyleneoctyl-POE (octyl-POE) and 2.5% SDS at

100uC for 10 min] prior to loading on the SDS-PAGE gel, many

of the high molecular weight bands disappeared and in lanes 69

and 79 a single, faint low molecular weight band was apparent (Fig.

S2, panel B). A similar band was reported in the initial

characterization of OmpB [3,6]. Proteomic analysis of these

bands revealed peptide matches to TM0477 (OmpA1) in the band

from lane 69 and TM0476 (OmpB) in the band from lane 79

(Table S2).

The SDS gel bands clearly contain other proteins, some of

which are not likely in the toga, but these results are common for

proteomic analyses of gel bands. Proteins adhering to one another

likely account for the presence of cytoplasmic and cell membrane

proteins in these preparations. Membrane-associated proteins

from thermophiles are more generally resistant to denaturation by

detergents and heat, so T. maritima membrane proteins like OmpB

might be particularly prone to associating with other proteins even

under what appear to be harsh denaturing conditions. As a rule,

the intensity of a mass spectrometric signal cannot easily be

correlated with the amount of a protein present a sample [19], so

the number of peptides observed for each protein is not necessarily

a measure of its relative abundance. TM0476 is the only protein in

these fractions that meets the description of OmpB and is a porin

candidate (Table 1), so we conclude that TM0476 is ompB, the

gene encoding the major toga porin of T. maritima.

The Purified OmpB had b-sheet Content as Determined
by Circular Dichroism

A hydroxyapatite fraction enriched in OmpB was analyzed by

circular dichroism (CD) for b-sheet secondary structure informa-

tion. The CD spectrum of this fraction showed predominantly b-

like characteristics, possessing a negative band at approximately

215 and lacking a distinct a-helix negative band at 222 nm (Fig.

S3) [20]. The spectrum also lacked the distinct positive peak at

212 nm that would indicate a predominantly random coil. Thus

this fraction is composed of protein with predominantly b-sheet

composition, an observation consistent with previous observations

of T. maritima OmpB that, like other porins, has high b-sheet

content [3].

Phylogenetic Analyses Revealed Likely ompA and ompB
Homologs among Thermotogales Species

Since OmpA1 and OmpB are the two dominant structural

proteins of the T. maritima toga and all known species of the

Thermotogales have togas, we examined the genome sequences of

other members of the Thermotogales to identify possible homologs

of these proteins. OmpB homologs were found using a PSI-

BLAST search (see Methods) and are present in all species except

Thermosipho africanus and Thermotoga lettingae. A distant homolog to

OmpB was detected in Vibrio mimicus with an E value of 8E-6

(using the T. maritima OmpB sequence in a BLASTp query).

Currently there are no more similar sequences outside the

Thermotogales in the GenBank nr database suggesting that

OmpB-like proteins are unique to the Thermotogales.

The genomic regions encoding OmpB and OmpA are very

similar in Thermotogales species. These genes are present in a

syntenic region with two other genes: secG-tyrS-ompA-ompB (Fig. 1).

Several species have paralogs of ompA1 (examined in detail below)

and two species, T. lettingae and Thermosipho africanus, have genes

downstream of ompA that do not show significant to similarity to

TM0476 in a PSI-blast search (see Methods). These two non-

orthologous genes downstream of the ompA genes are currently

annotated as encoding hypothetical proteins in these two genome

sequences. Given the conserved gene order, it is likely that these

genes are either analogous porins, or homologs that have diverged

beyond recognition. To test this hypothesis, we examined the

sequences of the OmpB orthologs and these putative analogs for

porin characteristics (Table 3). Though they lack the globularity

seen in most of the orthologous proteins, the putative analogs have

many of the same porin-like characteristics shared by the

orthologs. In addition, they also have C-terminal amino acid

compositions like those of TM0476 and known porins, including a

terminal phenylalanine (Table 4). Consequently, although these

proteins are not recognizable homologs of T. maritima OmpB and

its orthologs, these proteins likely serve a similar function.

OmpA homologs are present in all Thermotogales species, but

their relationships to one another are complex (Fig. 2). All the

members of the Thermotogales have two ompA genes, except

Thermotogales bacterium mesG.Ag.4 (now Mesotoga prima [21]),

which has only one. Phylogenetic reconstructions reveal that there

are two well supported paralogous clusters (indicated in red and

green in Fig. 2), OmpA1 and OmpA2, and a third group of poorly

supported OmpA homologs. The T. maritima ompA2 is locus

TM1729. Its product is the same size as OmpA1 and is predicted

to be predominantly a-helical. This protein was identified in the

toga fraction of cell extracts providing evidence that its gene is

expressed (Table S1). Analyses of the sequences of all the OmpA

homologs as described in Methods suggest that all have an SLH

domain motif, are predicted to be over 75% a-helical, and have

hydrophobic C-termini [6,22–24]. These features suggest that all

identified OmpA homologs could link the outer sheath to the

peptidoglycan layer in their respective organisms.

Discussion

We have identified the gene that encodes OmpB, the major

porin of Thermotoga maritima. The ompB gene is locus TM0476 in

the T. maritima genome sequence. TM0476 was annotated as a

hypothetical protein, but of the other porin candidates in the

genome sequence, its protein sequence has the most features

consistent with the published characteristics of OmpB and of other

porins. We found the protein encoded by TM0476 in the toga

fraction of T. maritima cells and identified it by LC/MS/MS. We

showed experimentally that this purified protein has b-sheet

character as expected in a porin. Further evidence for our

assignment is that the ompB gene is adjacent to the gene for the

other major structural toga protein, OmpA1.

Since the toga is the defining characteristic of the Thermo-

togales, we expected to find homologs of T. maritima OmpB in all

the sequenced genomes of the lineage. Surprisingly, two species

did not have detectable homologs. T. lettingae and Thermosipho

africanus instead have possible analogs of OmpB encoded

downstream of their ompA genes. Those putative analogs have

the characteristics of porins and likely serve a similar function. The

OmpB proteins have only distantly related homologs outside the

Thermotogales. Studies of the evolution of porins have largely

been restricted to examinations within the Enteriobacteriaceae so

it is not clear if the OmpBs’ evolutionary novelty is an unusual

feature of Thermotogales porins or if all porin evolutionary

families are only distantly related to one another. Porins in Yersinia

species show evidence of positive selection [25], likely in response

to host immune responses as well as phage infection and

environmental factors. Perhaps the Thermotogales porins also

Structural Components of Thermotogales Togas
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respond to selective environmental factors and so have changed in

sequence sufficient to erase traces of their ancestry. The problem

of their evolutionary history is likely further complicated by the

lack of genome sequences from closer relatives of the Thermo-

togales.

Given the essential structural role of the T. maritima anchor

protein OmpA1, one might expect other Thermotogales species to

Figure 1. Syntenic regions containing T. maritima OmpA1 and OmpB homologs and putative analogs mapped onto an rRNA gene
reference tree. The coloring of the individual genes indicates whether the gene is a homolog, paralog, or putative analog. segG homologs are
yellow, tyrS homologs are light blue, ompA1 homologues are red, and ompB homologues are dark blue. ompA paralogs are white (see Fig. 2). ompB
putative analogs are grey. The tree is a concatenated 23S-16S rRNA gene cladogram. Branch lengths do not reflect the extent of divergence.
doi:10.1371/journal.pone.0040236.g001

Table 3. Characteristics of T. maritima OmpB orthologs and putative syntenic analogs in Thermotogales species.

Protein/ORF*
Molecular Weight
(kD) Signal peptide b Strand content (%){ Globularity Porin C-terminus

TM0476 44.90 + 26.07/22 + +

TRQ2_0459 45.53 + 34.62/26.39 + +

Tpet_0444 45.04 + 26.14/23.5 + +

Tnap_0258 45.04 + 26.14/23.5 + +

CTN_0196 44.18 + 25.3/23.6 + +

Tmel_0175 42.76 + 24.4/38.65 + +

Fnod_1725 47.99 + 36.97/35.19 + +

Kole_1501 38.70 + 30.08/29 - +

Theba_0319 42.71 + 28.12/26 - +

Pmob_0056 47.88 + 27.48/27 + +

Tlet_1718 35.86 + 31.25/21 - +

THA_406 32.43 + 42.76/43 - +

Characteristics are defined in the text. Legend: +, protein is predicted to possesses the attribute; –, protein is predicted to not possess the attribute.
ORFs are from TM, T. maritima; TRQ2, Thermotoga species strain RQ2; Tpet, Thermotoga petrophila; Tnap, Thermotoga naphthophila; CTN, Thermotoga neapolitana;
Tmel, Thermotoga melanesiensis; Fnod, Fervidobacterium nodosum; Tlet, Thermotoga lettingae; THA, Thermosipho africanus; Kole, Kosmotoga olearia; Pmob,
Petrotoga mobilis; and Theba, Thermotogales bacterium mesG1.Ag.4.2 (Mesotoga prima). ORFs above the line are homologs of TM0476, those below the line are
possible analogs of TM0476.
{Values of the percent b strand content were calculated utilizing the multisequence alignment programs STRAP and SCRATCH, respectively.
doi:10.1371/journal.pone.0040236.t003
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have homologs proteins. All species do have such homologs, but

surprisingly there are more OmpA-like genes in the lineage. T.

maritima has a second OmpA, TM1729. TM1729, OmpA2, was

detected in our toga fraction, therefore it is expressed. The

sequence of OmpA2 suggests that it has the same structural

features as OmpA1. All other Thermotogales species also have two

OmpAs, except M. prima that has only one OmpA-like protein.

Why T. maritima and the other species have a second OmpA-type

protein is unknown.

Our results provide the first comprehensive examination of the

protein composition of the toga and our analyses of the Omp

proteins in the Thermotogales have revealed unexpected com-

plexity and evolutionary histories. More detailed examinations are

underway to learn how the toga forms and what roles these

proteins play in its functions.

Materials and Methods

Cell Growth and Membrane Collection
Thermotoga maritima MSB8 (DSM 3109) was obtained from the

Deutsche Sammlung von Mikroorganismen und Zellkulturen,

Braunschweig, Germany. Cells were grown on a modified basal

defined medium under anaerobic conditions with maltose as

carbon source [26]. Cells were grown to stationary phase,

collected by centrifugation at 6,0006g for 15 min, and washed

three times with 100 mM ammonium bicarbonate buffer pH 8.0.

Cells were lysed by bead beating (Zymo Research ZR Bashing-

beads, 0.5 mm), followed by sonication on ice. Lysates were

subjected to centrifugation at 100,0006g for 1 h and the resulting

pellet washed twice with 100 mM ammonium bicarbonate. Cells

harvested from one liter of dense cell culture yielded approxi-

mately 0.5 g wet weight of membrane fraction. The resulting

membrane pellets were washed three times with 100 mM

ammonium bicarbonate and stored at –20uC.

Enrichment of Toga Sheaths
A 1.5 g membrane pellet was resuspended in 1 mL 100 mM

ammonium bicarbonate and applied to a sucrose step gradient

consisting of 30% (1.8 ml), 40% (2.4 ml), 50% (1.2 ml), 55%

(1.2 ml) and 65% (0.6 ml) sucrose. The resulting gradient was

centrifuged at 100,0006g for 18 h at 4uC. Twenty-four fractions

were collected from top to bottom and each analyzed by SDS-

PAGE. Fractions 15–21 had high molecular weight material

characteristic of the toga fraction. Nine bands with molecular

weights .60 kDa from an SDS-PAGE lane of a representative

fraction, fraction 18, were excised (Fig. S1) and analyzed by LC/

MS/MS.

Purification of OmpB-like Trimer
Fractions 15–21 were pooled and concentrated using a 10 kDa

cutoff centrifugal filtration device (Millipore). The concentrated

sample was solubilized with 1% octyl-POE then loaded onto a

10 ml hydroxyapatite column, which was previously washed and

equilibrated with 1 mM sodium phosphate, pH 7.3. The column

was washed with 3 column volumes of 1 mM sodium phosphate

until no further protein material eluted. Subsequent step-wise

elution of bound protein was carried out with ten aliquots, of

0.5 ml each, ranging from 1 to 500 mM sodium phosphate,

pH 7.3, in 50 mM increments. The protein content of the eluted

fractions was determined by Bradford assay [27], concentrated

and subjected to SDS-PAGE analysis. The fraction containing the

porin trimer was treated with 1% octyl-POE and 2.5% SDS at

100uC to monitor the dissociation of the trimer into monomers

(Fig. S2).

SDS-PAGE Analysis
Gel electrophoresis was performed using 9% SDS polyacryl-

amide gels in a BioRad Mini-PROTEANH II Electrophoresis Cell.

Loading buffer was composed of 0.5 M Tris pH 6.8, 10%

glycerol, 10% SDS, 5% 2-mercaptoethanol and 1% bromophenol

blue. A 10 mL amount of loading buffer was mixed with 30 mL of

sample and boiled for 5 min. Following electrophoresis for 4 h at

room temperature, gels were fixed and stained with 0.1%

Coomassie Brilliant Blue overnight and then destained with an

acetic acid/water/methanol mixture (10/40/50). Gels were then

rinsed with deionized water and photographed under white light.

The extracted gel bands were tryptically digested for LC-MS/MS

analysis as previously described [28].

Table 4. The C-terminal amino acids of the OmpB orthologs and putative analogs show porin characters.

C-terminal amino acids (N R C)

Protein 10 9 8 7 6 5 4 3 2 1

TM0476 Y L Y L K A S V A F

TRQ2_0459 F G F I T Y R L A F

Tpet_0444 Y L Y L K A S V A F

Tnap_0258 Y L Y L K A S V A F

CTN_0196 Y L Y L K A E V E F

Tmel_0175 Y A K L S W S V S F

Fnod_1725 N L K L T Y S A S F

Kole_1501 Y A Y V G Y Y A A F

Theba_0319 S L G L Y F D K Y F

Pmob_0056 Y L Y L K A E F K F

Tlet_1718 T L A W R M R V Y F

THA_406 T L N M N A H F D F

Position 1 indicates the C-terminal amino acid. Hydrophobic residues are boldface. All porins shown possess the essential terminal phenylalanine and most have
hydrophobic residues at positions 3, 5, 7 and 9. ORFs above the line are homologs of TM0476, those below the line are possible analogs of TM0476.
doi:10.1371/journal.pone.0040236.t004
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Capillary LC-MS/MS Analysis
Proteomic analysis was used to identify the sequences of the

proteins in the toga fraction. Identification of proteins was

achieved through the detection of unique peptides with LC/

MS/MS. Results were compared to a single organism database

containing the T. maritima genome sequence.

The capillary RPLC system used for peptide separations has

been previously described [29]. Briefly, the HPLC system

consisted of a custom configuration of 100-mL ISCO Model

100 DM syringe pumps (Isco, Inc., Lincoln, NE), 2-position Valco

valves (Valco Instruments Co., Houston, TX), and a PAL

autosampler (Leap Technologies, Carrboro, NC), allowing for

fully automated sample analysis across four separate HPLC

columns (3-mm Jupiter C18 stationary phase, Phenomenex,

Torrence, CA). Mobile phase consisted of 0.1% formic acid in

water (A) and 0.1% formic acid acetonitrile (B). The HPLC system

was equilibrated at 10 kpsi with 100% mobile phase A, and a

mobile phase selection valve was switched 50 min after injection,

which created a near-exponential gradient as mobile phase B

displaced A in a 2.5 mL active mixer. A 40-cm length of 360 mm

o.d. x 15 mm i.d. fused silica tubing was used to split ,17 mL/min

of flow before it reached the injection valve (5 mL sample loop).

The split flow controlled the gradient speed under conditions of

constant pressure operation (10 kpsi). Flow through the capillary

HPLC column when equilibrated to 100% mobile phase A was

,500 nL/min. ESI using an etched fused-silica tip [29] was

employed to interface the RPLC separation to a LTQ Orbitrap

Velos mass spectrometer (Thermo Scientific, San Jose, CA).

Precursor ion mass spectra (AGC 16106) were collected for 400–

2000 m/z range at a resolution of 100 K followed by data

dependent ion trap CID MS/MS (collision energy 35%, AGC

36104) of the ten most abundant ions. A dynamic exclusion time

of 180 sec was used to discriminate against previously analyzed

ions.

Figure 2. Maximum likelihood phylogenetic tree of OmpA protein sequences from several Thermotogales species. Red labels indicate
likely T. maritima OmpA1 (TM0477) orthologs, green labels indicate likely OmpA2 (TM1729) orthologs, and homologs whose type of homology
cannot be ascertained are labeled in black. The tree was calculated as unrooted phylogeny, but is depicted as rooted between the likely OmpA1 and
OmpA2 clusters. Branches with approximate Likelihood Ratio Test (aLRT) support values #0.75 were collapsed. aLRT, posterior probability, and
bootstrap support values are given above or below the branch to which they pertain. Organism abbreviations and gene identification numbers for
loci are Petrotoga mobilis (Pmob_0057, 160901548 and Pmob_1624, 160903060); T. lettingae (Tlet_1719, 157364570 and Tlet_0301, 157363168); T.
petrophila (Tpet_1024, 148270158 and Tpet_0443, 148269583); T. maritima (TM0477, 15643243 and TM1729, 15644475); T. napthophila (Tnap_1078,
281412500 and Tnap_0259, 281411698) T. neapolitana (CTN_0195, 222099169 and CTN_0927, 222099901); Thermotoga. sp. strain RQ2 (TRQ2_0458,
170288259 and TRQ2_1096, 170288887); Fervidobacterium nodosum (Fnod_1724, 154250391 and Fnod_0047, 154248750); Kosmotoga olearia
(Kole_0210, 239616617 and Kole_1500, 239617873); Thermosipho africanus (THA_407, 217076525 and THA_93, 217076226); Thermosipho
melanesiensis (Tmel_0176, 150020084 and Tmel_1771, 150021641); Thermotogales bacterium mesG.Ag.4 (Mesotoga prima) (ThebaDRAFT_0522,
307297745; now Theba_0318).
doi:10.1371/journal.pone.0040236.g002
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MS/MS data were processed using SEQUEST [30] and a

database that contained the genome-derived possible T. maritima

protein sequences. No enzyme rules were applied, and identified

peptides were filtered using the MSGF [31] score of 1E-10 as a

cutoff value for confident identifications.

Circular Dichroism
Circular dichroism experiments were performed on an Applied

Photophysics p*-180 instrument with temperature maintained at

37uC. Scans were collected from 200 to 250 nm on a 300 ml

sample in a 1 mm path-length quartz cuvette. Samples contained

0.3 mg/ml protein in 20 mM sodium phosphate buffer, pH 7.3.

Computational Analyses
Genome and sequences were obtained from the NCBI

database. Molecular weight and amino acid composition was

calculated using ProtParam [32]. Signal peptides were detected

using SignalP, PSort and SecretoryP. Non-classically secreted

proteins were predicted by sequence analysis with SecretomeP

[33]. Pfam and InterProScan were used to examine the sequences

for domains [34,35]. Beta sheet content analysis of amino acid

sequences was carried out using STRAP and SCRATCH [36,37].

Globularity was predicted using the program GlobPlot2 [38].

Protein hydrophobicity was examined using the Kyte-Doolittle

scale implemented at Molecular Toolkit. Alpha helical content was

assessed using NetsurfP and Predictprotein. Two dimensional

representations of proteins were generated using PredTMBB [39].

Phylogenetic Analyses
For phylogenetic analyses, protein sequences were obtained

from GenBank and potential homologs assembled using the

predicted amino acid sequences of OmpA1 and OmpB as

BLASTp queries to the GenBank nonredundant database. OmpB

homologs were also determined using PSI-BLAST [40]. TM0476

was used as a query sequence and 5 iterations were run using an E-

value cut off of 1E-6. Sequences were aligned using MUSCLE

[41] as implemented in Seaview [42]. Operons were determined

using the ProOpDB database [15]. ProtTest version 2.4 [43] was

used to determine the most appropriate substitution model from

the ones implemented in the different programs. The maximum

likelihood phylogeny, approximate Likelihood Ratio Test (aLRT),

and bootstrap support values were determined using PHYML v3.0

[44] with an additional five random starting trees, the Nearest

Neighbor Interchange plus Subtree Pruning and Regrafting tree

search options, the LG substitution model [45], and a Gamma

distribution plus invariant sites to describe Among Site Rate

Variation (ASRV). The shape parameter and the percent invariant

sites were optimized. Bipartitions in the maximum likelihood tree

that had aLRT support values below 0.75 were collapsed and

branch lengths were recalculated in TREEPUZZLE using the

usertree option, the WAG substitution model [46], and modeling

ASRV as described above. Posterior probabilities were calculated

using MrBayes 3.1.2 using the WAG substitution model, and a

gamma distribution with variable shape parameter. After 1 million

generations, the average standard deviation of split frequencies

was 0.004031. The first 4000 generations were discarded as

burnin.

Supporting Information

Figure S1 Preparative SDS-PAGE of a sucrose gradient
fraction with the nine bands that were excised and
analyzed by LC/MS/MS indicated. An ultracentrifugation

pellet fraction of cell free extract was resolved on a sucrose

gradient and fraction 18 from within the 50–65% sucrose fraction

was mildly denatured by boiling for 5 min in 2.5% SDS prior to

SDS-PAGE. The resulting gel band is shown here. Nine bands

were excised and subjected to proteomic analysis by LC/MS/MS.

The proteins identified from each band are listed in Table S1.

(TIFF)

Figure S2 Preparative SDS-PAGE of eight hydroxyapa-
tite fractions. The proteins in the 50–65% sucrose fractions

(fractions 15–21) of a sucrose gradient were pooled and resolved by

hydroxyapatite chromatography into eight fractions as described

in Materials and Methods. SDS-PAGE analyses of the resulting

fractions are shown. A. Proteins from each hydroxyapatite fraction

were loaded following mild denaturation (2.5% SDS, 100uC
5 min). B. Proteins from the same eight fractions as in A loaded

following complete denaturation (2.5% SDS, 1% octyl-POE,

100uC, 10 min). Asterisks next to bands at the bottom of lanes 69

and 79 indicate bands removed for LC/MS/MS (Table S2). Note

that A and B show different SDS gels.

(TIFF)

Figure S3 Circular dichroism spectra of putative
OmpB. Scans were collected from 200 to 250 nm at 37uC with

protein concentrations of 0.3 mg/ml protein. The purified porin,

displayed predominantly b-like characteristics.

(TIF)

Table S1 Full catalogue of proteins in the bands of the
SDS-PAGE gel of fraction 18 of the sucrose gradient as
shown in Figure S1. Proteins in bands 1–9 were identified by

two or more unique peptide matches to a database that contained

the genome-derived possible T. maritima protein sequences.

OmpA1 (TM0477) and OmpB (TM0476) are highlighted in bold

font.

(DOCX)

Table S2 Catalogue of proteins detected in the fully
denatured final fractions of the hydroxyapatite column,
lanes 69 and 79, Figure S2. Proteins were identified by 2 or

more unique peptide matches. OmpA1 (TM0477) and OmpB

(TM0476) are highlighted in bold font.

(DOCX)
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