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SYNOPSIS 

This report presents a strain-rate dependent plastic constitutive model for clays.  

Based on the concepts of critical-state soil mechanics and bounding surface plasticity 

theory, the model reproduces the mechanical response of clays under multi-axial loading 

conditions and predicts both the drained and undrained behavior.  The model parameters 

are determined for Boston Blue Clay, London Clay and Kaolin Clay, and the 

performance of the model in simulating the mechanical response of these clays is 

demonstrated for low to medium strain rates.  The sensitivity of each model parameter is 

checked by perturbing the calibrated values by ±20%.  Subsequently, a probabilistic 

analysis using Monte Carlo simulations is performed by treating the model parameters as 

random variables and the impact of the statistics of the parameters on the undrained shear 

strength is investigated. 

 

KEYWORDS: Constitutive relations; Plasticity; Rate-dependence; Clay; Probabilistic 

analysis 
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INTRODUCTION 

The mechanical behavior of clayey soils is affected by the rate of induced strains 

(Kavazanjian and Mitchell 1980, Sorensen et al. 2007, Sheahan 2005 and 1991, Díaz-

Rodríguez et al. 2009, Matesic and Vucetic 2003).  Examples of practical problems 

where rate-dependent behavior of clay is important are landslides, pile penetration and 

wave loads on offshore foundations.  The rate effects in clay are exhibited from a low 

applied strain rate of 10−2%/hr (≈10−7/sec).  It has been observed in the laboratory triaxial 

compression tests that, for low to medium applied strain rates of 10−2-102%/hr (≈10−7-

10−4/sec), the undrained shear strength increases by 5-20% per log-cycle increase in the 

strain rate.  The initial shear modulus increases at a rate of about 10% per log-cycle 

increase in the applied strain rate (Matesic and Vucetic 2003).  The critical-state strength 

of clays, however, remains rather unaffected by the rate of induced strains under low to 

medium strain rates (Sheahan et al. 1996, Sorensen et al. 2007, Díaz-Rodríguez et al. 

2009).  The overconsolidation ratio (OCR) plays an important role in the rate-dependent 

mechanical response of clay.  For a constant OCR, the deviatoric stress attains its peak at 

approximately the same strain level for different strain rates.  However, the strain at 

which the peak occurs increases with increasing OCR.  Significant post-peak softening is 

observed for low OCR of 1 and 2 due to the generation of positive excess pore pressure 

while, for OCR of 4 or greater, the post-peak softening is relatively small. 

Rate dependence of clay has been mostly investigated for creep and stress 

relaxation, and elasto-viscoplastic constitutive models based on overstress theory have 

been developed to simulate them (Perzyna 1963, 1966, Zienkiewicz and Cormeau 1974, 

Adachi and Oka 1982, Hinchberger and Rowe 1998).  Adachi and Oka (1982) proposed 
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an elasto-viscoplastic constitutive model based on the original Cam-clay model to capture 

creep, stress relaxation and secondary consolidation.  Hinchberger and Rowe (1998) 

incorporated Perzyna’s overstress theory in elliptical Drucker-Prager cap model to 

capture the secondary consolidation behavior of clay.  Viscoplasticity has been combined 

with the bounding surface plasticity theory as well to simulate creep, stress relaxation and 

secondary compression of normally-consolidated (NC) and overconsolidated (OC) clays 

(Dafalias 1982, Kaliakin and Dafalias 1990a, b). 

The constitutive models developed to model clay subjected to induced strain rates 

are mostly different from the above viscoplastic models.  Clays subjected to rate-

dependent strains have been mostly modeled using explicit strain-rate dependent 

equations without the use of viscoplastic overstress theories.  In these models, the 

relevant clay properties (e.g., peak undrained shear strength) are explicitly expressed as 

functions of the applied strain rates where the applied strain rate is a model input 

parameter, and the rate-independent plasticity theory is used to simulate the rate-

dependent behavior (Jung and Biscontin 2006, Zhou and Randolph 2007 and Chakraborty 

2009).  These constitutive models do not involve numerically expensive viscoplastic 

stress-strain integration scheme and can predict the strain-rate dependent behavior with 

reasonable accuracy.   

In this report, a constitutive model is presented that simulates the mechanical 

response of clay subjected to strains applied with a rate of up to 50%/hr (≈ 1×10−4/sec).  

Based on the concepts of critical state soil mechanics and bounding surface plasticity 

theory, the model incorporates the rate effects under various loading conditions in the 

multiaxial stress space.  The model is an extension of the bounding surface plasticity 
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model developed by Manzari and Dafalias (1997) and later modified by Li and Dafalias 

(2000), Papadimitriou and Bouckovalas (2002), Dafalias et al. (2004), Loukidis and 

Salgado (2009) and Chakraborty (2009).  The model parameters have been determined 

for Boston Blue Clay (BBC), London Clay (LC) and Kaolin Clay (KC) by comparing the 

simulation results with the experimental data available in the literature.  The rate-

dependent model parameter is determined from the strain-rate dependent triaxial 

compression test data, while the rate-independent parameters are determined from one-

dimensional and isotropic consolidation tests, resonant column tests, triaxial compression 

and extension tests, and simple shear tests following a hierarchical process.  A sensitivity 

analysis is performed by varying the input model parameters by ± 20% of the calibrated 

values.  Finally, a probabilistic analysis is performed by treating the input model 

parameters as random variables and performing Monte Carlo simulations, and the 

statistics of the output undrained shear strength is investigated. 

 CONSTITUTIVE MODEL DEVELOPMENT 

Model Surfaces in Stress Space  

The basic, rate-independent part of the model consists of yield, dilatancy, and 

critical-state surfaces that are made up of two distinct geometrical surfaces: a cone with 

straight surfaces in the meridional plane and apex at the origin, and a bounding flat cap 

on the critical state surface (Chakraborty 2009).  The model formulation is done in terms 

of stress ratios, i.e., stresses normalized with respect to the mean effective stress p' (= 

σ'kk/3, where σ'ij is the effective Cauchy stress tensor).  Figure 1(a) shows the projection 

of the yield, dilatancy and critical-state surfaces on the π-plane of the principal deviatoric 

stress ratio space s1/p'-s2/p'-s3/p' (sij = σ'ij − δijσ'kk/3 is the deviatoric stress tensor in 
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which δij denotes the Kronecker’s delta).  Figure 1(b) shows the projection of the model 

surfaces on the longitudinal q-p' plane (q = σ'1 − σ'3 is the deviatoric stress in the triaxial 

stress space).  The yield surface is expressed in terms of the deviatoric stress ratio tensor 

rij (= sij/p') as 

( )( )ij ij ij ij 2 3 0f  r r – m  α α= − − =   
(1) 

which can be visualized as a cone in the principal deviatoric stress space intersecting the 

π-plane as a circle with radius 2 3m  and center αij, which is the kinematic hardening 

tensor.  The yield surface cannot harden isotropically (i.e., m stays constant in the model) 

but can harden kinematically through the evolution of αij given by 

( ) ( )s
ij shear c ij ij c ij ij

2 2
3 3

H M m n M m n
p

α λ α α
⎛ ⎞ ⎛ ⎞

= − − − −⎜ ⎟ ⎜ ⎟′ ⎝ ⎠ ⎝ ⎠
  (2) 

where shearλ  is the shearing-related plastic multiplier, Hs is the plastic modulus controlling 

the development of the plastic shear strain (the equations of shearλ  and Hs are given later), 

nij ( ) ( )( )ij ij kl kl kl kl/s p s p s pα α α⎡ ⎤′ ′ ′= − − −⎣ ⎦  
determines the direction of the projection of 

the current stress on the critical-state and dilatancy surfaces (i.e., the mapping rule) and 

Mc denotes the critical-state surface defined by  

s
s

s

s
s

s

1/
1
1/
1

c cc cc1/
1
1/
1

11
1

( )
11 cos3
1

nn

n

nn

n

c
c

M g M M
c
c

θ

θ

⎡ ⎤⎛ ⎞−
−⎢ ⎥⎜ ⎟+⎢ ⎥⎝ ⎠= = ⎢ ⎥⎛ ⎞−⎢ ⎥−⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦

 (3) 
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(a) 

 

 

(b) 

Figure 1. Plastic constitutive model plotted in (a) the deviatoric plane and (b) the 
meridional plane 
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where Mcc is the stress ratio q/p' at the critical-state (CS) under triaxial compression, g(θ) 

is a function of the Lode’s angle θ and determines the shape of the critical state surface in 

the deviatoric stress space and c1 = 3/(Mcc + 3).  The parameter ns takes a constant value 

of 0.2 for all the clays. The dilatancy surface is defined by 

cc d
d cc

d

  ( ) 2
1 exp(  )

M k OCRM g M
k OCR
ξθ

ξ
⎡ ⎤

= +⎢ ⎥−⎣ ⎦  (4) 

where ξ = e − eCS is the state parameter (Been and Jefferies 1985) in which e and eCS are 

the current and critical-state void ratios at the same mean stress (Figure 2), OCR is the 

overconsolidation ratio and kd is given by 

( )
cc

d ln
Mk

λ κ ρ
=

−
  (5) 

in which λ and κ are the slopes of the linear normal-consolidation and overconsolidation 

lines in the e-ln(p') space and ρ (= p'c/p'CS) is the ratio of the preconsolidation pressure p'c 

to the critical-state pressure p'CS along the same overconsolidation line in the e-ln(p') 

space (Figure 2).  The dilatancy surface hardens isotropically as the state parameter ξ 

changes due to a change in the stress state. 

The flat cap to the critical-state surface helps in capturing the yielding and 

development of plastic strains under pure compression.  The bounding flat cap is 

perpendicular to the hydrostatic (mean stress) axis and intersects the hydrostatic axis at p′ 

= p′c (Figure 1b).  It is given by 

c c 0F p p′ ′= − =  (6) 

The movement of the cap along the mean-stress axis signifies the increase in the 

preconsolidation pressure along the normal consolidation line (NCL) in the e-ln(p') space.  
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The consistency condition is not applied to the cap, and hence, stress states marginally 

outside the cap are possible.   

 

 

Figure 2.  Locus of the normal consolidation line and critical state line in e-ln(p') space 

The normal consolidation line is given by (Figure 2) 

NC
a

N ln pe
p

− λ
⎛ ⎞′

= ⎜ ⎟′⎝ ⎠
 (7) 

where eNC is the normal consolidation void ratio and N is the void ratio at the reference 

mean stress pa (= 100 kPa).  The critical state line (CSL) follows the same slope as that of 

the normal consolidation line in the e-ln(p') space, and is given by 

( )CS 0
a a

ln N ln lnp pe
p p

λ λ κ ρ − λ
⎛ ⎞ ⎛ ⎞′ ′

= Γ − = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (8) 

e

ln(p‘)

N

Γ

ln(p‘c)ln(p‘CS)ln(p‘a)

eCS

ξ

λ
λ

κ
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where Γ0 is the critical state void ratio at the reference mean stress pa under rate-

independent loading. 

The NCL of clays under rate-independent loading lies to the left of the rate-

dependent NCL in the e-ln(p') space, and the rightward shift of the NCL happens with 

increase in the rate of the applied strain (Leroueil et al. 1985, Sheahan 2005).  This 

movement of NCL as a function of strain rate signifies an increase in the preconsolidation 

pressure p'c with increase in the strain rate.  Based on the available experimental results, 

the rate dependent preconsolidation pressure p'c,rd is found to be a function of the applied 

strain rate ijε  and can be expressed in terms of an equivalent strain rate eqε ( ij ij= ε ε ) as 

(Figure 3) 

( )0.05
c,rd c,ri eq1.3p p ε′ ′=

 
(9)

 

where p'c,ri is the rate-independent value of the preconsolidation pressure and eqε is 

expressed in %/hr. 

Experimental studies also show that the peak undrained strength increases with 

increasing strain rate.  This increase is captured by the model in a simple but practical 

way by assuming that the critical state line moves to the right in the e-ln(p') space with 

increasing strain rate (Chakraborty 2009).  Mathematically, this is achieved by replacing 

Γ0 in the equation of critical state line [equation (8)] with Γ given by 

( ) ( )0 0 0 eq c1 ln 0.1 1 ln 1C C dε⎡ ⎤Γ = Γ + + +⎣ ⎦

 

(10) 

where C0 is a model parameter, dc denotes a distance in the three-dimensional void ratio-

mean stress-deviatoric space between the current soil state and the critical state and eqε  is 

expressed in %/hr.  Thus, Γ = Γ0 when eqε  = 0.  The distance dc is defined as 
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Figure 3. Preconsolidation pressure as a function of strain rate 

( )22
c 0 inid C dξ⎡ ⎤= +⎢ ⎥⎣ ⎦  

 

(11) 

where ξini is the initial value of the state parameter and d is a normalized distance of the 

current stress state from the critical-state surface in the deviatoric plane.  d  is given by  

c ij ij

c

3
2

M r r
d

M

−

=
 

 

(12) 

In this model, the NCL and CSL move independently as the strain rate increases, but the 

CSL does not cross the NCL. 
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Elastic Shear and Bulk Moduli 

The stress-strain relation is given by 

( ) ( )p p
ij ij ij kk kk ij

22
3

G K Gσ ε ε ε ε δ⎛ ⎞′ = − + − −⎜ ⎟
⎝ ⎠  (13) 

where the total strain rate ijε  has an elastic ( e
ijε ) and a plastic ( p

ijε ) component                  

[ e p
ij ij ij= +ε ε ε ], and G and K are the shear and bulk moduli, respectively.  When the stress 

state is entirely within the yield surface, there is no plastic strain in the soil.  Since the 

yield surface is very small in this model, the plastic process is prevalent for almost the 

entire loading duration. 

G and K are assumed to decrease exponentially with increasing shear and/or mean 

stresses from the initial values Gmax and Kmax until certain minimal values Gmin and Kmin 

are reached: 

( )
( )( )ij ij,ini ij ij,iniini

min max min
c cc

3 / 2
exp

r rp p
G G G G

p M

α α
ζ

⎡ ⎤⎛ ⎞− −′ ′−⎢ ⎥⎜ ⎟= + − − +⎢ ⎥⎜ ⎟′⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦   

(14) 

( )
( )( )ij ij,ini ij ij,iniini

min max min
c cc

3 / 2
exp

r rp p
K K K K

p M

α α
ζ

⎡ ⎤⎛ ⎞− −′ ′−⎢ ⎥⎜ ⎟= + − − +⎢ ⎥⎜ ⎟′⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦  

(15) 

where p'ini is the initial mean stress, ζ is a model parameter and αij,ini is the initial value of 

kinematic hardening tensor.  The small-strain shear modulus Gmax is given by (Hardin 

1978) 

( ) ( )
2

0.2
max g a

2.97
1

e
G C p p OCR

e
−

′=
+  

(16) 

where Cg is a material parameter.  The initial bulk modulus Kmax is related to the small-

strain shear modulus Gmax through a constant Poisson’s ratio ν as 
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max max
2(1 )
3(1 2 )

K G ν
ν

+
=

−  
(17) 

The minimal values of bulk and shear moduli, Kmin and Gmin, are given by  

min
(1 )p eK
κ

′ +
=

 
(18) 

min min
3(1 2 )
2(1 )

G Kν
ν

−
=

+  
(19) 

which are obtained using the slope κ of the overconsolidation lines in the e-ln(p') space 

observed in one-dimensional compression tests for a constant Poisson’s ratio ν. 

Flow Rule 

The plastic strain tensor p
ijε  has two components: p

ij,shearε and p
ij,capε .  The 

component p
ij,shearε  is related to the conical yield, dilatancy and critical state surfaces, and 

its rate is given by 

p
ij,shear shear ij shear ij ij

1
3

R R Dε λ λ δ⎛ ⎞′= = +⎜ ⎟
⎝ ⎠  

(20) 

The gradient Rij of the plastic potential in the stress space is assumed to consist of a 

deviatoric component R′ij (given in Loukidis and Salgado 2009 and Chakraborty 2009), 

which expresses the direction of the deviatoric plastic strain rate p
ij,shearε , and a mean 

component related directly to the dilatancy D that controls the shear-induced plastic 

volumetric strain rate p
kk,shearε .  The dilatancy D is given by 

( ) ( ) ( )0
d ij ij eq 1

cc

2 1 ln 1 exp 1
3

dD M m n d OCR
M OCR

α ε
⎡ ⎤

⎡ ⎤= − − + + −⎡ ⎤⎢ ⎥ ⎣ ⎦⎣ ⎦
⎣ ⎦  

 (21) 
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and it depends on the “distance” d (= ( )d ij ij2 3 M m nα− − ) between the current and 

projected stress states on the dilatancy surface (Figure 1a) and on the strain rate.  The unit 

vector nij is parallel to the vector connecting the center of the yield surface in the π-plane 

(i.e., the axis of the yield surface) to the current stress point on the yield surface (Figure 

1a).  nij determines the image stresses on the critical-state and dilatancy surfaces, and 

hence, determines the direction of projection of the current stress on the critical-state and 

dilatancy surfaces.  The parameter d0 controls the development of D with stress ratio.  

The parameter d1 controls the dependence of dilatancy on OCR.  The plastic multiplier 

shearλ  for yielding in the shearing mode is obtained by satisfying the consistency 

condition for the conical yield surface and is given by 

shear ij ij kl kl ij ij
s ij s

1 1 1 ( )
3

f n n r
H H

λ σ δ σ
σ
∂ ⎛ ⎞′ ′= = −⎜ ⎟′∂ ⎝ ⎠  

 (22) 

The plastic modulus Hs in the above equation, controlling the development of p
ij,shearε , is 

given by 

( )s 0 c ij ij

ij ij,ini ij ij,ini

2 2
3 33 ( )( )

2

G OCRH h M m n
r r

α
α α

⎛ ⎞×
= − −⎜ ⎟⎜ ⎟⎡ ⎤ ⎝ ⎠− −⎢ ⎥

⎣ ⎦  

 (23) 

Hs depends on the distance between the current stress state and the image stress state on 

the critical-state surface (represented by c in Figure 1a). 

The second component of plastic strain, p
ij,capε , is given by  

capp
ij,cap ij ij

*
*

1
3

R D
D
λ

ε δ⎛ ⎞′= +⎜ ⎟
⎝ ⎠

 

(24) 
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where D* is the cap related dilatancy and capλ the cap related plastic multiplier 

(Chakraborty 2009).  The equation of D* is obtained by Chakraborty (2009) as 

( ) ( )
0,NC 0,NC

0,NC 0,NC

ij ij

*

1 1
1 11 2 1 21 1 13 3

1 1 2

K K

K K
D

p e K p e Gr r
λ κ λ κ

− −⎛ ⎞ ⎡ ⎤
⎜ ⎟ ⎢ ⎥

+ +⎜ ⎟ ⎢ ⎥⎡ ⎤− −⎜ ⎟ ⎢ ⎥= + −⎢ ⎥′ ′+ +⎜ ⎟ ⎢ ⎥⎣ ⎦
⎜ ⎟ ⎢ ⎥
⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

 (25) 

where K0,NC is the coefficient of earth pressure at rest for normally consolidated clay. 

capλ is given by 

cap
c

1 p
H

λ ′=  (26) 

where Hc is the plastic modulus controlling the development of p
ij,capε  and is given by  

c
c

1 exp p peH p
p

ζ
λ κ

′ ′⎡ ⎤−+′= ⎢ ⎥′− ⎣ ⎦
 (27) 

Hc is very high for stress states far from the cap but decreases exponentially with the 

distance p′c − p′. 

The constitutive model presented in this report is an extension of previously 

developed constitutive model by Manzari and Dafalias (1997), Dafalias et al. (2004), 

Loukidis and Salgado (2009) and Chakraborty (2009).  The unique features of the 

constitutive model presented herein are (1) a new equation for the strain-rate dependent 

preconsolidation pressure, (2) use of a single parameter C0 to capture the rate dependence 

as a function of OCR, (3) variable distance between CSL and NCL in the e-ln(p′) space 

and (4) rate dependent dilatancy equation.  These features have improved the 

performance of the model significantly.   
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The stress-strain integration of the constitutive model is performed using an 

elastic predictor-plastic corrector algorithm as illustrated in Figure 4 (Ortiz and Simo 

1986).  In this algorithm, at a certain time step t = ti, the stresses σ'ij, kinematic hardening 

variable αij and void ratio e are the input parameters.  The elastic predictor stress is 

calculated from the input stresses using the strain increment Δεkl in the iteration step.  

The elastic stiffness matrix el
ijklD  used in the stress-strain relation is the shear modulus 

when deviatoric stress is calculated from deviatoric strain and is the bulk modulus when 

mean stress is calculated from volumetric strain.  Once the elastic predictor stresses are 

calculated, the yield stress value f is checked with the yield surface error tolerance FTOL 

(= 10−9).  If f < FTOL, it signifies that the stresses are elastic and the iteration loop 

completes and the next strain increment starts.  If f > FTOL, then stresses are outside the 

yield surface, and plastic correction starts.  Plastic multiplier λ  is calculated to perform 

the plastic correction.  The shear induced plastic multiplier shearλ is calculated for the 

deviatoric stress correction and the cap induced plastic multiplier capλ is calculated for the 

cap induced volumetric stress correction.   In the correction step, the total incremental 

strain Δεkl for that particular increment remains constant.  After the stress correction is 

done, stresses, kinematic hardening variable and void ratio are updated and the yield 

stress value is again checked with FTOL.  Further plastic correction is performed before 

starting a new strain increment if  f > FTOL.  For the simulation of the rate-independent, 

single element triaxial test, one-step plastic correction iteration is generally sufficient 

when the incremental strain Δεkl is sufficiently small.  However, for simulating rate-
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dependent behavior, 3-5 correction iterations are necessary depending on the applied 

strain rate. 

 

 

Figure 4. Flowchart for the elastic predictor-plastic corrector algorithm used for stress-
strain integration of the constitutive model 
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Calculate plastic multipliers,  ( ) ( )corr. k+1 corr. k el
ij ij ijkl kl′ ′= − D Rσ σ λ , 

( ) ( )
( )

( )

c ij ij
corr. k+1 corr. k s
ij ij

c ij ij

2
3

2
3

⎛ ⎞
− −⎜ ⎟

⎝ ⎠= +
′ ⎛ ⎞

− −⎜ ⎟
⎝ ⎠

M m n
H
p

M m n

α
α α λ

α

, 

Calculate   ( ) ( )( )corr. k+1 corr. k+1 (k+1)
ij ij =f , fσ α  

Stress state inside yield surface

i+1t el.pr.
ij ij′ ′=σ σ , i+1 it t

ij ij=α α  

yes

Check if  (k+1) < −f FTOL   

yes

Store
( )i+1 corr. k+1t

ij ij′ ′=σ σ
( )i+1 corr. k+1t

ij ij=α α  

no

End

Set iter = 0, k = 1 

Set iter = iter+1, k 
= k+1 
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MODEL PARAMETERS 

The constitutive model has 14 rate-independent and 1 rate-dependent parameters.  

These parameters were determined based on one-dimensional consolidation, triaxial 

compression and extension, simple shear, bender element and resonant column tests.  The 

constitutive model is calibrated in a hierarchical manner by curve fitting over given sets 

of experimental data points.  Such a hierarchical process of model parameter 

determination is described in details in Chakraborty (2009).   

The model parameters are determined for Boston Blue Clay (BBC), Kaolin Clay 

(KC), and London Clay (LC).  BBC is a low-plasticity marine clay, composed of illite 

and quartz (Terzaghi et al. 1996).  LC contains illite, kaolinite, smectite and quartz 

(Gasparre et al. 2007a and 2007b).  KC mainly contains kaolinite.  Table 1 shows the 

index properties of BBC, LC and KC.  The calibrated values of the model parameters are 

given in Table 2.  Most of the rate-independent model parameters for BBC and LC are 

obtained from Chakraborty (2009).  The newly introduced dilatancy parameter d1 is 

determined by comparing the rate-independent simulation results with the experimental 

data obtained from the literature.  The parameter ρ is recalibrated to better capture the 

anisotropic stress-strain behavior of clays.  The experimental data for BBC used in this 

study are obtained from Papadimitriou et al. (2005), Pestana et al. (2002) and Ling et al. 

(2002) (the original test data of Ladd and Varallay 1965, Ladd and Edgers 1972 and 

Sheahan 1991 were used).  The data for LC are obtained from Gasparre (2005), Gasparre 

et al. (2007a, b) and Hight et al. (2003).  The experimental data for KC are obtained from 

Ling et al. (2002). 
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Table 1. Index Properties of Boston Blue Clay, London Clay, and Kaolin Clay 

 

 

Table 2. Constitutive Model Parameters for Boston Blue Clay, London Clay and Kaolin 
Clay 

 

 Model Parameters 
Model Relationships BBC LC KC 

Small-Strain (Elastic) Poisson’s ratio ν 0.25 0.2 0.25 
G0 Correlation Parameter Cg 250 100 120 

Elastic Moduli with Degradation ζ 5 10 5 
κ 0.036 0.064 0.033 

Normal Consolidation Line N 1.138 1.07 0.984 
λ 0.187 0.168 0.18 

Critical State Surface Mc 1.305 0.827 1.18 
ρ 2.2 2.5 2.7 

Dilatancy Surface d1 0.2 0.2 0.2 
d0 1 0.24 0.8 

Flow Rule c2 0.95 0.95 0.95 
ns 0.2 0.2 0.2 

Hardening h0 1.1 1.1 1.1 
Rate Dependence C0 0.1-2.0 2.0 0.05 

  

 

The rate-dependent parameter C0 was determined by comparing the simulation 

results with the rate-dependent triaxial compression data of Sheahan (1991) and Sheahan 

et al. (1996) for BBC, of Sorensen et al. (2007) for LC and of Mukabi and Tatsuoka 

Clay 
Type 

Liquid 
Limit (%) 

Plastic Limit
(%) Classification Reference 

Bosto
n Blue 
Clay 

32.6 19.5 
Inorganic Clay or Silt of Low to 
Medium Plasticity (CL) (USCS) Ladd and Varallyay 

(1965) 

Londo
n Clay 69.6 26.2 High Plasticity Stiff Clay Nishimura (2005) 

Kaolin
Clay 62 30 Low Compressibility (CL/ML) 

(USCS) Prashant (2004) 
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(1999) for KC.  It was observed for BBC that assuming one value of C0 for different 

OCRs did not produce good match with the experimental results.  A similar observation 

was made by Hajek et al. (2009) who found that the constitutive equations that captured 

the behavior of normally consolidated clays did not capture the behavior 

overconsolidated clays well.  Therefore, Hajek et al. (2009) considered an OCR-

dependent model calibration process.  Following a similar approach, C0 is assumed to be 

OCR dependent in this study.  It was observed that only BBC required an OCR dependent 

calibration for C0 the values of which are given in Table 3.  For LC and KC, C0 was 

found not to vary with OCR (Table 2).  

 

Table 3. Rate Dependent Model Parameter C0 for Boston Blue Clay 
 

OCR Strain-rate (%/hr) C0

1 

50 0.6 
5 1.1 

0.5 2.0 
0.05 2.0 

2 

50 0.55
5 1.05

0.5 2.0 
0.05 2.0 

4 0.05-50 0.1 

8 0.05-50 0.1 
 

MODEL SIMULATIONS 

Undrained Rate-Independent Behavior 

Figure 5 shows the rate-independent response of BBC as obtained from the model 

simulations and triaxial experiments.  Figure 5(a) compare the model predictions with the 
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experimental data of the deviatoric stress q as a function of axial strain εa for undrained 

triaxial compression of K0-consolidated specimens.  Figure 5(b) shows the comparisons 

for the corresponding stress path plots (deviatoric stress versus mean stress).  The stress 

values are normalized with respect to the maximum axial stress σ'a,max.  In the 

simulations, the same Mcc value is used for both isotropic and K0 consolidation cases.  

This causes a slight under prediction of stresses at OCR = 4 and 8.  Overall, the 

simulations match the experimental results reasonably well.  Similar match between 

experimental and simulation results were observed for LC and KC as well and are given 

in Martindale (2011). 

Figure 6 compares the model predictions with the rate-independent experimental 

data of undrained triaxial compression tests performed on isotropically-consolidated 

specimens of LC.  The stress-strain (Figures 6(a)) and stress path plots (Figure 6(b)) 

show a reasonable match between simulation results and experimental data.   Similar 

comparisons for BBC and KC were also done and a reasonable match between 

experimental and simulation results were observed (Martindale 2011). 
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(a) 

 

 

(b) 

Figure 5. Rate-independent, K0 consolidated triaxial compression test results for Boston 
Blue Clay: (a) stress strain plot and (b) stress path plot (test data from Pestana et al. 2002) 
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(a) 
 

  

(b) 

Figure 6. Rate-independent, isotropically consolidated triaxial compression test results 
for London clay: (a) stress strain plot and (b) stress path plot (test data from Gasparre 

2005) 
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Undrained Rate-Dependent Behavior 

Figure 7 shows the comparison between simulation and experimental results of 

rate-dependent, K0-consolidated triaxial compression tests on BBC with an applied strain 

rate of 5%/hr.  The stresses are normalized with respect to the maximum axial stress 

σ'a,max.  The stress-strain (Figure 7(a)) and stress path plots (Figure 7(b)) demonstrate the 

ability of the constitutive model to capture the mechanical response of clays under strain 

rate-dependent loading.  The model captures the peak undrained strength su,peak as a 

function of strain rate reasonably well for the range of OCR considered in the study.  The 

post-peak shear strength is, however, under predicted.  The stress paths are also captured 

with reasonable accuracy.  Similar comparisons for BBC for other strain-rate values are 

given in Martindale (2011). 

Figure 8 shows the deviatoric stress versus axial strain plots of rate-dependent, 

isotropically consolidated triaxial tests performed on LC samples with OCR = 1 and 5 at 

different strain rates.  The simulated plots are in reasonable agreement with the 

experimental plots.  Similar comparisons for KC were also done the details of which are 

given in Martindale (2011).  Figure 9 shows the plots of the predicted su,peak values for 

BBC, LC and KC along with the corresponding experimental values as a function of 

strain rate.  This plot shows that the developed constitutive model predicts the rate-

dependent undrained shear strength of clay reasonably well.  
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(a) 
 

 

(b). 
 

Figure 7. Rate-dependent, K0 consolidated triaxial compression test results for Boston 
Blue clay (applied strain rate = 5%/hr): (a) stress strain plot and (b) stress path plot (test 

data from Sheahan et al. 1996) 
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Figure 8. Stress strain plots for rate-dependent, isotropically consolidated triaxial 
compression tests performed on London clay (test data from Sorensen et al. 2007)  
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Figure 9. Normalized su,peak as a function of strain rate: comparison of simulation and 
experimental results 

Parametric Sensitivity Study 

The sensitivity of each model parameter was checked for BBC, LC and KC.  For 

the sensitivity study, the model parameters were perturbed by ±20% of their calibrated 

values one at a time.  An average error Eaverage was calculated for each parameter as 
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Total Number of Strain Values
base,i var ,i

i 1 base,i
average

100

(%) = 
Total Number of Error Calculations at Different Strain Values

q q
q

E
=

⎡ ⎤⎡ ⎤−
⎢ ⎥×⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑

 

(28)
 

where qbase,i is the value of deviatoric stress obtained from model simulation at ith strain 

increment using the calibrated model parameters and qvar,i is the corresponding value of 

deviatoric stress obtained from model simulation when a parameter is perturbed.  The 

error E = |qbase,i − qvar,i|/qbase,i is calculated at different strain values and then the total 

accumulated error for all the strain values is divided by the number of calculations to 

obtain Eaverage.  Eaverage calculated for all the parameters of BBC for rate-independent, K0 

consolidated triaxial test simulations are shown in Table 4 for different values of OCR.  

The values corresponding to OCR = 2 and +20% perturbation are shown in Figure 10.  It 

is evident that Mcc, ρ, OCR and K0 are the most sensitive parameters.  For normally 

consolidated clays, λ and κ are relatively more sensitive than the remaining parameters 

while, for overconsolidated clays, the dilatancy parameters d0 and d1 are relatively more 

sensitive.  Similar trends were observed for LC and KC as well (Martindale 2011).  
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Table 4. Average Parameter Sensitivity Error for Boston Blue Clay for Rate-Independent Loading 
 

Average Parameter Sensitivity Error Eaverage (%) 
 +20% Variation −20% Variation 

Parameter OCR  = 1 OCR = 2 OCR = 4 OCR = 8 OCR = 1 OCR = 2 OCR = 4 OCR = 8 
Cg 0.15 0.11 0.50 0.82 0.19 0.14 0.60 0.96 
d0 0.83 0.25 0.51 2.64 1.33 0.39 0.75 3.39 
d1 0 0.06 0.39 4.27 0 0.06 0.35 34.55 

Mcc 17.89 18.54 19.46 22.64 18.68 19.01 19.87 22.67 
h0 0.39 0.39 0.48 0.27 0.55 0.56 0.73 0.39 
κ 2.94 0.73 1.58 4.21 3.01 0.77 1.82 5.30 
λ 2.09 0.61 0.58 1.09 3.26 0.93 0.85 1.73 
N 0.11 0.17 0.53 1.38 0.12 0.16 0.54 1.36 
ρ 11.22 11.802 11.75 12.38 17.03 18.08 18.18 20.89 
ν 0 0 0 0 0 0 0 0 
ζ 0.39 0.22 1.25 2.26 0.56 0.25 1.69 3.76 

K0 9.14 2.27 2.62 3.72 10.14 2.52 2.70 3.26 
OCR 4.33 4.18 5.77 11.89 - 5.29 6.44 12.51 

m 0.01 0 0 0 0 0 0 0 
n1 0.40 0.24 0.08 0.11 0.48 0.28 0.09 0.12 
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(a) 
 

 

 

(b) 

Figure 10. Average normalized cumulative error Eaverage for +20% variation of model 
parameters of Boston Blue Clay for rate-independent, K0 consolidated triaxial simulations 
at OCR = 2: (a)  parameters with low sensitivity and (b) parameters with high sensitivity 
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Uncertainties in Model Parameters  

The uncertainty associated with the estimation of the model parameters is 

investigated probabilistically by considering the model parameters as random variables 

and performing Monte Carlo (M-C) simulations of the mechanical response of BBC.  The 

study was done assuming that the random variables (model parameters) follow normal 

and uniform probability distributions.  The calibrated deterministic values were assumed 

to be the means μ of the random parameters.  The standard deviations σ were calculated 

with the assumption that the ±20% scatter about the mean (deterministic) values 

correspond to ±3σ.  Thus, the coefficient of variation COV (= σ/μ) for all the parameters 

is 0.067.  The same mean and standard deviation values were used for normal and 

uniform distributions in the M-C simulations. 

Representative histograms of su,peak of  BBC considering normal and uniform 

probability distribution functions are shown in Figure 11.  These results were obtained for 

triaxial simulations at 50%/hr strain rate on K0 consolidated specimens with OCR =  2.  

The nature of the distributions of su,peak is approximately the same for both the normal 

and uniform probability distributions of the input parameters.  The difference in the mean 

values of su,peak obtained for normally and uniformly distributed  input parameters is only 

0.21%.  A similar trend was observed for the undrained shear strength su,CS at the critical 

state (Martindale 2011). 
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(a) 

 

 

(b) 

Figure 11. Histogram of su,peak obtained using (a) normal and (b) uniform probability 
distribution functions for the model parameters 
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Figure 12 shows the mean and COV of su,peak of K0 consolidated BBC at OCR = 8 

as a function of strain rate.  The su,peak values are obtained deterministically and 

probabilistically using normally and uniformly distributed inputs.  The mean values for 

all the three cases match very well.  The mean (or deterministic) undrained shear strength 

increases while the COV decreases with increase in the applied strain rate.  Figure 12(a) 

shows that the deterministic and mean values are the same for practical purposes.  Figure 

12(b) indicates that, in most likelihood, the magnitude of error in the estimation of the 

undrained shear strength due to erroneous model parameter estimations will not be 

significant. 
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(a) 

 

 

(b) 

Figure 12. Variation of (a) mean and deterministic su,peak and (b) COV of  su,peak  with 
applied strain rate for OCR = 8 
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CONCLUSIONS 

The report presents a rate-dependent plastic constitutive model for clays 

developed using the concepts of critical state soil mechanics and bounding surface 

plasticity.  The model consists of conical yield, dilatancy and critical state surfaces with a 

flat cap on the critical state surface. The model is capable of simulating clay behavior for 

both isotropic and anisotropic initial stress state and for loading paths that are more 

general than triaxial compression/extension.  The proposed model has 1 rate dependent 

parameter and 14 rate independent parameters.  The parameters were determined for 

BBC, LC and KC following a hierarchical manner.  The model considers OCR dependent 

model calibration process for the strain-rate dependent parameter.   

The proposed constitutive model captures adequately the rate-independent and 

rate-dependent response of clay behavior under isotropic and K0-consolidated triaxial 

compression conditions.  The model retains the rate-independent formulation in 

conjunction with the two-surface plasticity model and simulates the rate-dependent clay 

response without expensive numerical algorithm. 

The sensitivity of each model parameter is checked by perturbing the calibrated 

values by ±20% one at a time.  The parameters Mcc, ρ, OCR and K0 are the most 

sensitive.  For normally consolidated clays, λ and κ  are relatively more sensitive than the 

remaining parameters while, for overconsolidated clays, the dilatancy parameters d0 and 

d1 are relatively more sensitive.  

The uncertainties associated with the estimation of the model parameters was 

investigated probabilistically by considering the model parameters as random variables 

following normal and uniform probability distributions.  Monte Carlo (M-C) simulations 
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were performed and the statistics of the undrained shear strength of BBC was 

investigated.  The same values of mean and standard deviation were used for normal and 

uniform distributions in the M-C simulations. The su,peak values, obtained 

deterministically and probabilistically using normally and uniformly distributed inputs, 

matched very well.  The coefficients of variation of su,peak were found to be not more than 

12% which indicate that the magnitude of error in the estimation of the undrained shear 

strength due to erroneous model parameter estimations will not be significant. 
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