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Abstract
Background: Diets that restrict carbohydrate (CHO) have proven to be a successful dietary
treatment of obesity for many people, but the degree of weight loss varies across individuals. The
extent to which genetic factors associate with the magnitude of weight loss induced by CHO
restriction is unknown. We examined associations among polymorphisms in candidate genes and
weight loss in order to understand the physiological factors influencing body weight responses to
CHO restriction.

Methods: We screened for genetic associations with weight loss in 86 healthy adults who were
instructed to restrict CHO to a level that induced a small level of ketosis (CHO ~10% of total
energy). A total of 27 single nucleotide polymorphisms (SNPs) were selected from 15 candidate
genes involved in fat digestion/metabolism, intracellular glucose metabolism, lipoprotein
remodeling, and appetite regulation. Multiple linear regression was used to rank the SNPs
according to probability of association, and the most significant associations were analyzed in
greater detail.

Results: Mean weight loss was 6.4 kg. SNPs in the gastric lipase (LIPF), hepatic glycogen synthase
(GYS2), cholesteryl ester transfer protein (CETP) and galanin (GAL) genes were significantly
associated with weight loss.

Conclusion: A strong association between weight loss induced by dietary CHO restriction and
variability in genes regulating fat digestion, hepatic glucose metabolism, intravascular lipoprotein
remodeling, and appetite were detected. These discoveries could provide clues to important
physiologic adaptations underlying the body mass response to CHO restriction.
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Introduction
A first line of attack on diabetes and cardiovascular disease
is a reduction in body mass. A consistent finding across
many different diet studies is that carbohydrate (CHO)
restriction has a central role in facilitating weight loss and
improving features of metabolic syndrome [1,2], due to
mechanisms related to metabolic efficiency [3,4] and fac-
tors related to appetite regulation [5,6].

Genetic factors interact with dietary nutrients to impact
the development of obesity and the outcome of weight
loss therapies. The etiology of obesity is complex and can
result from a disruption in functioning of diverse but
interconnected pathways. Researchers have shown that
polymorphisms in several different genes play a role in
determining weight loss or weight maintenance in
response to various pharmacological and non-pharmaco-
logical therapies. The approach taken in these genetic
studies has been to separate individuals based upon allelic
variation is a candidate gene and determine if weight loss
or better maintenance of body mass varies as a function of
the polymorphism. For example, body mass responses to
various therapies have been linked to genes coding for
products involved in the sympathetic nervous system [7-
11], appetite regulating hormones [12,13], adipose tissue
transcription factors [14,15], and proteins regulating fat
digestion, deposition and mobilization [15-17].

In this study we use physiogenomics [18], a medical
application of sensitivity analysis and systems engineer-
ing. Sensitivity analysis is the study of the relationship
between input and output from a system as determined by
each system component. Physiogenomics utilizes the
genes as the components of the system. The gene variabil-
ity, measured by single nucleotide polymorphisms
(SNPs), is correlated to physiological responses of a pop-
ulation, the output. Physiogenomics determines how the
SNP frequency varies among individuals similarly
responding to the input over the entire range of the
response distribution.

Scrutiny of weight loss responses for subjects who have
consumed CHO restricted diets in our laboratory revealed
a rather large amount of variability in the magnitude of
weight loss [19,20]. This variability is not readily
explained by standard covariates such as caloric intake,
gender, age, activity, etc. Therefore a physiogenomic
approach was undertaken using families of candidate
genes, selected from those hypothesized to be involved in
the metabolic adaptations induced by CHO restriction in
the treatment of obesity. The results indicate that the mag-
nitude of weight loss induced by a CHO restricted diet is,
in part, explained by polymorphisms in specific genes
among those we selected to study: genes that regulate

lipases, intracellular glucose metabolism, HDL homeosta-
sis, and appetite hormones.

Methods
Subjects and study design
The subjects included 86 adults who participated in very
low CHO dietary studies designed to examine the effects
on weight loss, body composition, and other metabolic
responses related to cardiovascular disease in the Human
Performance Laboratory at the University of Connecticut
(Table 1). The subjects included 10 normal weight
women studied over 4 weeks [21], 15 overweight men and
13 overweight women studied over 4–6 wk [20], 28 over-
weight men studied over 12 wk [22], and 10 overweight
men and 10 overweight women with metabolic syndrome
studied over 12 wk (unpublished). Subjects did not have
diabetes, cardiovascular, respiratory, gastrointestinal, thy-
roid or any other metabolic disease. They were weight sta-
ble (± 2 kg) the month prior to starting the study, and
were not allowed to use nutritional supplements (except a
daily multi-vitamin/mineral), or be taking medications to
control blood lipids or glucose. The majority of subjects
were sedentary and all participants were instructed to
maintain the same level of physical activity throughout
the study. Before and after the low CHO diet, body mass
was determined in the morning after an overnight fast on
a calibrated digital scale with subjects in light clothing and
not wearing shoes. All subjects signed an informed con-
sent document approved by the Institutional Review
Board.

Dietary protocol
The diet intervention was free-living with the main goal to
restrict CHO to a level that induced a small level of keto-
sis. There were no restrictions on the type of fat from sat-
urated and unsaturated sources or cholesterol levels.
Foods commonly consumed were beef (e.g., hamburger,
steak), poultry (e.g., chicken, turkey), fish, vegetable oils,
various nuts/seeds and peanut butter, moderate amounts
of vegetables, salads with low CHO dressing, moderate
amounts of cheese, eggs, protein drinks, and water or low
CHO diet drinks. The use of sugar alcohol-containing low
CHO foods was permitted but limited to one item per
day. To ensure appropriate CHO restriction, subjects
monitored their level of ketosis daily using urine reagent
strips that produce a relative color change in the presence
of one of the primary ketones, acetoacetic acid. We have
found this to be a very sensitive indicator of CHO restric-
tion and compliance. Blood ketones were also checked
during the diets. On this basis, all subjects in our low
CHO studies were in ketosis for the majority of the exper-
imental period. All subjects received extensive initial ver-
bal and written instructions and weekly follow-up dietetic
education. Subjects received thorough instructions for
completing detailed weighed food records during baseline
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and various phases of the diet that were subsequently ana-
lyzed using regularly updated nutrient analysis software.
The actual mean nutrient breakdown of the diets as a per-
centage of total energy as obtained from at least 15 days of
weighed food records from four cohorts of subjects was 8–
13% CHO, 60–63% fat, and 28–30% protein (see Supple-
mental File).

Candidate gene selection
Eleven candidate genes were broadly selected for their var-
ious roles in regulation of body weight. We chose repre-
sentative genes coding for products from four pathways
and processes that we hypothesized as playing an impor-
tant role in mediating weight loss induced by CHO restric-
tion including (1) enzymes regulating digestion,
trafficking, and intracellular metabolism of fat, (2)
enzymes regulating intracellular glucose metabolism, (3)
proteins affecting lipoprotein remodeling and metabo-
lism, and (4) hormones regulating appetite (Table 2).

Laboratory analysis
Blood samples were collected from an arm vein into tubes
for DNA extraction. The DNA was extracted from 8.5 mL
of whole blood using the PreAnalytiX PAXgene DNA iso-
lation kit (Qiagen Inc, Valencia, CA). For some earlier par-
ticipants, neither whole blood nor DNA were available, so
DNA from lymphocytes remaining in archived serum
samples were amplified using the QiaGen REPLI-g Whole
Genome Amplification kit. Genotyping was performed
using the Illumina BeadArray™ platform and the Golden-
Gate™ assay [23,24]. The assay information and observed
allele frequencies for the SNPs used in this study are listed
in Table 2. Genotype calls of sufficient quality could not
be obtained for 14 subjects, which were left in the study to
contribute to the covariate model, but did not contribute
directly to the genetic associations.

Data analysis
All statistical analysis was performed using the R Statistics
Language and Environment [25-27]. Covariates were ana-
lyzed using multiple linear regression, and selected using
the stepwise procedure. To test for association with SNP
genotypes, the residual of ∆body mass from the covariate
model was tested using linear regression on the SNP gen-
otypes. SNP genotype was coded quantitatively as a
numerical variable indicating the number of minor alle-
les: 0 for major homozygotes, 1 for heterozygotes, and 2
for minor homozygotes. The F-statistic p-value for the
SNP variable was used to evaluate the significance of asso-
ciation. To test the validity of the p-values, we also per-
formed an independent calculation of the p-values using
permutation testing. The ranking of the first three SNPs
were identical under permutation and F-statistic analyses
(data not shown). To account for the multiple testing of
27 SNPs, we calculated adjusted p-values using Benjamini
and Hochbergs false discovery rate (FDR) procedure [28-
30]. In addition, we evaluated the power for detecting an
association based on the Bonferroni multiple comparison
adjustment. We calculated for each SNP the effect size in
standard deviations that is necessary for detection of an
association at a power of 80% (20% false negative rate)
using the formula

where a is the desired false positive rate (a = 0.05), b the
false negative rate (b = 1-Power = 0.2), c the number of
SNPs, z a standard normal deviate, N the number of sub-
jects, f the carrier proportion, and ∆ the difference in
∆body mass between carriers and non-carriers expressed
relative to the standard deviation [31].

∆ =
+

−( )
z z

Nf f

cα β/
,

1

Table 1: Mean body mass and weight loss broken down by gender, age, ethnicity, and length of diet.

Factor Level N Pre Body Mass (kg) Change Body Mass (kg) Genotyped

All All 86 89.4 -6.42 72
Gender Female 33 74.7 -4.33 32
Gender Male 53 98.5 -7.73 40
Age <40 yr 56 88.8 -6.12 48
Age 40–49 yr 21 89.8 -6.08 16
Age 50–59 yr 6 94.7 -8.87 5
Age 60–69 yr 3 86.2 -9.70 3
Ethnicity African Am 5 83.4 -5.60 3
Ethnicity Asian 1 60.9 -2.30 1
Ethnicity Caucasian 74 90.8 -6.52 63
Ethnicity Hispanic 3 78.6 -6.10 3
Ethnicity Indian 3 84.3 -7.13 2
Length 4 23 68.2 -2.20 23
Length 6 15 106.8 -6.27 11
Length 12 48 94.1 -8.50 38
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LOESS representation
We use a locally smoothed function of the SNP frequency
as it varies with body mass to visually represent the nature
of an association. LOESS (LOcally wEighted Scatter plot
Smooth) is a method to smooth data using a locally
weighted linear regression [32,33]. At each point in the
LOESS curve, a quadratic polynomial is fitted to the data
in the vicinity of that point. The data are weighted such

that they contribute less if they are further away, according
to the tricubic function

w
x x

d xi
i= −

−
( )
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Table 2: List of 15 genes and 27 SNPs studied for association with weight loss induced by a low CHO diet.

Gene 
Family or 
Pathway

Gene SNP N mac min maj Freq Gene Description Sequence Context

Lipases Hepatic lipase rs936960 49 7 A C 0.07 LIPC lipase, hepatic CAGAGCACGAGGCTGATTTTC [A/
C]ATCCCAGTGTGGGCCACACC

rs417344 50 13 T C 0.13 LIPC lipase, hepatic TTTCCTAATTTTGCAGTTGAG [A/
G]TTTAAGAGGTTGGGAACTGG

rs6083 39 28 A G 0.36 LIPC lipase, hepatic GTCTTTCTCCAGATGATGCCA [A/
G]TTTTGTGGATGCCATTCATA

Lipoprotein lipase rs295 46 15 A C 0.16 LPL lipoprotein lipase GATGCACCTACTAGACACCTA [A/
C]TCTGCGCTAGATGGTGGGGG

rs328 53 10 C G 0.09 LPL lipoprotein lipase ACAAGTCTCTGAATAAGAAGT [C/
G]AGGCTGGTGAGCATTCTGGG

Hormone sensitive 
lipase

rs10422283 43 26 T C 0.30 LIPE lipase, hormone-sensitive GGAAGGAACCTCGTACATCCT [A/
G]CGGGGCAGTGGGGACAGCGT

Lysosomal acid lipase rs1556478 35 28 A G 0.40 LIPA lipase A, lysosomal acid, 
cholesterol esterase 
(Wolman disease)

CACGGAGACTTATGCACCAGA [A/
G]TGAAATGCTGAGATGTTCTT

rs6586179 45 7 T C 0.08 LIPA lipase A, lysosomal acid, 
cholesterol esterase 
(Wolman disease)

ACCCTGCATTCTGAGGGGTCT [A/
G]GAGGGAAACTGACAGCTGTG

Endothelial lipase rs4245232 45 15 A C 0.17 LIPG lipase, endothelial TAAAAAACTAAAGCCCGCCTG [A/
C]GTCTTGTTAATGAATGATAG

Gastric lipase rs814628 45 9 A G 0.10 LIPF lipase, gastric ATCGACTTCATTGTAAAGAAA [A/
G]CTGGACAGAAGCAGCTACAC

Glycogen 
Synthases

Glycogen Synthase 1 
(muscle)

rs2287754 35 16 A G 0.23 GYS1 glycogen synthase 1 
(muscle)

CGGGAAGCTTGCAAGACGCTC [A/
G]GCTTCCTATTGCAAGACCGC

Glycogen Synthase 2 
(hepatic)

rs1478290 59 29 T G 0.25 GYS2 glycogen synthase 2 (liver) AATGTGGCTGAAGCCAAAAGC [A/
C]TAATGAATGAGGGGAAGCCT

rs1871143 40 23 T G 0.29 GYS2 glycogen synthase 2 (liver) AGCCAGGAGCTTTCCTGGGCG [A/
C]TTTTTGTACAGGATCTCATT

rs2306179 44 18 A G 0.20 GYS2 glycogen synthase 2 (liver) TTTCAGTAGGTTTGCAGGGAA [A/
G]CCAACTCAAAGCTATATCTG

Glycogen Synthase 3b rs4688046 44 19 T C 0.22 GSK3B glycogen synthase kinase 3 
beta

TAGTAAACTATTTCTTCCCAT [A/
G]GGAGAAGATGGATTCTTTTC

rs334555 43 7 C G 0.08 GSK3B glycogen synthase kinase 3 
beta

AATTATATCTTATTATTAAAA [C/
G]TCTACCAACTCAAAGCTTCC

HDL 
Homeostasis

CETP rs711752 46 36 A G 0.39 CETP cholesteryl ester transfer 
protein, plasma

TTCAAGGTCAAGTTCTTTGGT [A/
G]AGAAGGTCCTAGCTGCATTG

rs3764261 41 20 T G 0.24 CETP cholesteryl ester transfer 
protein, plasma

AGTGAATGAGATAGCAGACAA [A/
C]CCAGATGCCTACCGACAGGT

rs5880 44 4 C G 0.05 CETP cholesteryl ester transfer 
protein, plasma

GATATCGTGACTACCGTCCAG [C/
G]CCTCCTATTCTAAGAAAAGC

rs1532624 51 33 T G 0.32 CETP cholesteryl ester transfer 
protein, plasma

TCTGCCCCTTTGGGCTGCAGC [A/
C]TCACAAGCTGTGTGGCGTTG

rs5883 56 8 T C 0.07 CETP cholesteryl ester transfer 
protein, plasma

AGCTACCTTGGCCAGCGAGTG [A/
G]AAGACTCGCTCAGAGAACCA

APOA1 rs5070 41 18 A G 0.22 APOA
1

apolipoprotein A-I GCCACGGGGATTTAGGGAGAA [A/
G]GCCCCCCGATGGTTGGCTCC

APOC3 rs4520 38 23 T C 0.30 APOC
3

apolipoprotein C-III CTTGGTGGCGTGCTTCATGTA [A/
G]CCCTGCATGAAGCTGAGAAG

rs2071521 45 37 T C 0.41 APOC
3

apolipoprotein C-III ACAGCTCCTGTTGCCATAGGA [A/
G]GGAGCTGGGTGAGATACTAG

Appetite 
Hormones

Galanin rs694066 56 6 A G 0.05 GAL galanin TTCTAAGTCCTCTGCCATGCC [A/
G]GGAAAGCCTGGGTGCACCCA

Neuro-peptide Y rs1468271 48 5 A G 0.05 NPY neuropeptide Y GACCCTGTAATTTTCAGAAAC [A/
G]CACATAGGAGTGGGTGTCTG

Ghrelin Precursor rs26312 63 14 A G 0.11 GHRL ghrelin precursor GCTGTTGCTGCTCTGGCCTCT [A/
G]TGAGCCCCGGGAGTCCGCAG

SNP identification numbers (noted as "rs...") are the unique SNP identifiers from the NCBI dbSNP database. Also given are the number of patients 
with good genotype results (N), the number of minor alleles found (mac), and the corresponding allele frequency as observed in this study.
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where x is the abscissa of the point to be estimated, the xi
are the data points in the vicinity, and d(x) is the maxi-
mum distance of x to the xi.

Results
Table 1 summarizes the weight loss data available for the
study population. The distribution of weight loss was
non-gaussian (Figure 1). Of the potential covariates listed
in Table 3, length of diet, body mass index, and baseline
total cholesterol were significantly associated with weight
loss. Length of diet, in particular, accounted for an
increased weight loss of 0.55 kg with each additional week
of diet. Increased baseline body mass index (BMI) was
also correlated with weight loss. There was a relationship
between total cholesterol level and weight loss, with an
additional 19 grams of weight lost for every mg/dl of total
cholesterol at the beginning of the study.

After adjusting for the associations in Table 3, each SNP in
Table 2 was tested for association with the residual varia-
ble (body mass adjusted for the covariates) (Table 4). Of
the 27 SNPs, four had a statistically significant association
with the residual body mass, namely gastric lipase (LIPF,
SNP rs814628), cholesteryl ester transfer protein (CETP,
SNP rs5883), hepatic glycogen synthase 2 (GYS2, SNP
rs2306179), and galanin (GAL, SNP rs694066). The first
three results remained significant when adjustment was
made for the testing of multiple SNPs using the FDR
method.

Figures 2, 3, 4, 5 show a detailed representation of the
genetic association tests for all genes. The overall distribu-
tion of change in body mass is shown along with the indi-
vidual genotypes and a LOESS fit of the allele frequency as
a function of body mass. The bell curve shows the fitted
distribution of body mass phenotype in the clinical stud-

ies. The LOESS curve shows the localized frequency of the
least common allele for sectors of the distribution. For
SNPs with a strong association, the marker frequency will
be significantly different between the high end and the
low end of the distribution. Conversely, if a marker is neu-
tral, the frequency will be independent on the body mass
and the LOESS curve will be essentially flat.

For example, the first panel in Figure 2 shows the LOESS
curve for SNP rs814628, which is located in the gene for
gastric lipase (LIPF). The frequency of the minor allele
approaches 60% at the highest amount of weight loss (left
of the distribution) whereas it is 5% in subjects with little
body mass change (right of the distribution). The overall
frequency of this SNP in the study population is 10%
(Table 2). This marked dependence of SNP frequency with
the phenotype is indicative of a strong association
between the gene marker and body mass, as attested by a
p value of 0.0002 (Table 4).

Distribution of change in body mass (weight loss) in the study populationFigure 1
Distribution of change in body mass (weight loss) in the study 
population.

Table 3: Potential covariates examined. The 3 statistically significant ones are shown in italics with corresponding significance level, p 
value.

Name Measure Description p-value

Gender male, female Patient gender
Age integer Patient age
Ethnicity African American, Asian, Caucasian, Hispanic, Indian Patient self reported ethnicity
Length 4, 6, or 12 wk Length of diet 1.00E-12
TC mg/dl Total cholesterol 0.04
LDL mg/dl LDL cholesterol
HDL mg/dl HDL cholesterol
TG mg/dl Tryglycerides
THDLR ratio Ratio of Total to HDL-C
BMS kg Body mass
FM kg Fat mass
LBM kg Lean body mass
PF percent Percent body fat
BMI kg/m2 Body mass index 3.40E-06
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Discussion
The principal metabolic adaptations contributing to
weight loss induced by CHO restriction are unknown.
This study used physiogenomic analysis to examine the
relations between genes regulating target proteins impact-
ing the intake and metabolism of dietary nutrients and
weight loss in subjects on a very low CHO diet. The
change with length of diet is a good confirmation that it is
indeed the low CHO intervention that caused the weight
loss, although it is unknown if similar changes would be
found if weight loss were brought about by other types of
diets. Genetic polymorphisms also significantly associate
with weight loss when these factors are used as a covariate
indicating that genetic variation may be a valuable tool to
predict individual variability in weight loss to dietary
CHO restriction. The results indicate that common
genetic markers in gastric lipase, glycogen synthase, CETP,
and galanin have a substantial effect on weight loss
response to CHO restricted diets.

Very low CHO diets are typically higher in fat. We there-
fore hypothesized that polymorphisms in various lipases
may account for variability in weight loss. We tested SNPs
in genes for gastric, hepatic, lipoprotein, hormone-sensi-

tive, lysosomal acid, and endothelial lipase. Unexpect-
edly, we discovered the gastric isoenzyme was the most
significant genetic association to weight loss, whereas
other lipases were not. Gastric lipase is secreted by the
mucosa of the stomach and hydrolyzes the ester bonds of
dietary triglycerides in the gastrointestinal tract. Pancre-
atic lipase is generally the dominant enzyme in the
hydrolysis of gastrointestinal lipids, but gastric lipase can
contribute significantly especially in instances where pan-
creatic lipase is deficient [34]. Thus a significant locus of
variability is the ability to perform first pass breakdown of
dietary fat. Individuals with the least common version of
the enzyme had the most weight loss, indicating that
impairment of gastric fat breakdown on a low CHO diet
enhances weight loss.

The second category of genes we surveyed was related to
glycogen synthesis. Glycogen synthase catalyzes the for-
mation of glycogen from glucose. A defect in this pathway
in skeletal muscle has a dominant role in the insulin
resistance that occurs in diabetes [35]. Polymorphisms in
glycogen synthase kinase beta (GSK3B), a regulator of gly-
cogen synthase activity, and skeletal muscle glycogen syn-
thase 1 (GYS1) have been examined in several studies, but

Table 4: Results of the association test of each SNP against the phenotypic variation residual from the regression of covariates in Table 
3. Results significant at alpha ≤ 0.05 are indicated in bold. Also shown are the FDR corrected p-value, the degrees of freedom in the 
regression model, the regression coefficient indicating the size of the effect of the minor allele, and the minimum effect size for 80% 
power of detection, relative to the standard deviation.

SNP Gene p-value FDR degf coeff power SNP type

rs936960 LIPC 0.7354 0.8011 47 0.351 2.08 intron 1
rs417344 LIPC 0.1322 0.5433 48 1.175 1.57 ~5.5 kb upstream from LIPC
rs6083 LIPC 0.6944 0.8011 37 -0.226 1.25 S215N
rs295 LPL 0.5519 0.7843 44 -0.526 1.49 intron 6
rs328 LPL 0.1973 0.5744 51 -1.330 1.76 exon 9, *474S
rs10422283 LIPE 0.1610 0.5433 41 0.916 1.24 intron 1
rs1556478 LIPA 0.7417 0.8011 33 0.228 1.29 intron 5
rs6586179 LIPA 0.2575 0.6321 43 -1.189 2.08 exon 1, R23G
rs4245232 LIPG 0.1561 0.5433 43 0.906 1.50 ~1.5 kb upstream
rs814628 LIPF 0.0002 0.0059 43 -3.658 1.86 exon 4, Ala161>Thr
rs2287754 GYS1 0.6950 0.8011 33 -0.324 1.51 5' UTR
rs1478290 GYS2 0.4504 0.7843 57 -0.381 1.13 ~3.5 Kb upstream
rs1871143 GYS2 0.5236 0.7843 38 -0.381 1.31 intron 11
rs2306179 GYS2 0.0068 0.0610 42 -1.717 1.40 intron 5
rs4688046 GSK3B 0.5148 0.7843 42 -0.382 1.37 intron 3
rs334555 GSK3B 0.4553 0.7843 41 0.925 2.09 intron 1
rs711752 CETP 0.2127 0.5744 44 0.677 1.13 intron 1
rs3764261 CETP 0.6900 0.8011 39 0.263 1.36 ~2.6 kb upstream
rs5880 CETP 0.0782 0.4220 42 2.769 2.71 P390A
rs1532624 CETP 0.5299 0.7843 49 0.339 1.12 intron 7
rs5883 CETP 0.0018 0.0237 54 -2.854 1.94 exon 9, synonymous
rs5070 APOA1 0.4406 0.7843 39 -0.454 1.41 Intron
rs4520 APOC3 0.4275 0.7843 36 -0.497 1.32 G34G
rs2071521 APOC3 0.9176 0.9176 43 -0.053 1.13 Upstream
rs694066 GAL 0.0231 0.1557 54 2.105 2.22 intron 1
rs1468271 NPY 0.7401 0.8011 46 -0.378 2.43 intron 1
rs26312 GHRL 0.7832 0.8133 61 0.233 1.50 ~1 kb upstream
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have generally failed to associate with diabetes or meas-
ures of insulin resistance [36,37]. In addition to GSK3B
and GYS1, we examined hepatic glycogen synthase 2
because recent work also indicates that insulin stimulated
hepatic glycogen synthesis is impaired in diabetics [38].
We discovered that a polymorphism in hepatic, but not
skeletal muscle, glycogen synthase was associated with
weight loss. The results suggest that the hepatic response
to carbohydrate restriction may influence the weight loss
response to a low CHO diet.

In addition to weight loss, our prior work has shown that
low CHO diets result in reliable and dramatic changes in
lipoprotein metabolism characterized by decreased trig-
lycerides and remodeling of LDL and HDL cholesterol to
form larger particles [1,22]. Since weight loss has similar
effects, we surveyed various apolipoproteins and enzymes
regulating triglyceride and lipoprotein metabolism
including CETP, apolipoprotein A-I, and apolipoprotein
C-III. We found that a specific polymorphism in plasma
CETP was significantly associated with weight loss. The
major function of CETP is the net mass transfer of choles-
terol esters from HDL to triglyceride-rich lipoproteins and

LDL-C and of triglyceride-rich lipoproteins to HDL-C and
LDL-C [39], thereby providing a mechanistic link to
explain the triglyceride lowering and remodeling effects of
LDL and HDL observed with low CHO diets [22,40]. Sev-
eral studies have linked polymorphisms in the CETP gene
to lipoprotein responses and risk for cardiovascular dis-
ease, and it has been hypothesized that these relations
may be altered by weight loss [41]. Our study is the first
study to show an association of a polymorphism in CETP
gene to weight loss. The finding suggests that the weight
loss response to CHO restriction may be mechanistically
linked to the intravascular processing of lipoproteins.

Hormonal regulation of food intake was hypothesized to
be one mechanism by which CHO restricted diets affect
weight loss. We examined polymorphisms in galanin,
neuropeptide Y, and ghrelin. Galanin was the only hor-
mone significantly associated with weight loss. Galanin
stimulates food consumption, particularly fat intake. A
prior study that measured polymorphisms in galanin
failed to find an association with fat intake or obesity [42].
Prior work has shown that galanin in the para-ventricular
nucleus is stimulated by a fat feeding and increased circu-

LOESS plots for six lipase genes listed in order of genetic association significance, as follows: LIPF gastric lipase, LIPC hepatic lipase, LIPG endothelial lipase, LIPE hormone-sensitive lipase, LPL lipoprotein lipase, LIPA lipase A lysosomal acidFigure 2
LOESS plots for six lipase genes listed in order of genetic association significance, as follows: LIPF gastric lipase, LIPC hepatic 
lipase, LIPG endothelial lipase, LIPE hormone-sensitive lipase, LPL lipoprotein lipase, LIPA lipase A lysosomal acid. One SNP is 
shown per gene, with corresponding significance level (p value), from Table 4. SNP rs814628 of the gastric lipase (LIPF) gene 
was significantly associated with weight loss while the others were not. The x-axis is the same as in figure 1: change in body 
mass [kg].
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lating triglycerides, which in turn promotes further fat
consumption in a non-homeostatic feed-forward manner
[43]. The finding in this study that a polymorphism sur-
veyed in the galanin gene was associated with weight loss
provides evidence for a role of fat-mediated appetite hor-
mones in determining the response to carbohydrate
restriction.

Physiogenomics introduces a new paradigm in the genetic
analysis of complex phenotypes. Historically, a candidate
gene approach identified one specific hypothesis. How-
ever, such focused hypotheses are often unrealistic given
the number of overlapping pathways at the organismic,
cellular, and molecular levels. Array technologies provide
efficient methods to simultaneously probe large numbers

of genes using general hypotheses about entire pathways
and systems. As a previous example of this approach, we
had demonstrated a strong association between CK activ-
ity during statin treatment and variability in genes related
to vascular function, angiotensin II Type 1 receptor
(AGTR1) and nitric oxide synthase 3 (NOS3) [44]. This
finding had led us to suggest the novel hypothesis that
vascular smooth muscle function may contribute to the
muscle side effects of statins.

Similarly, we believe that novel hypotheses have been
generated in this study. The approach to select gene fami-
lies or functionally related genes generates positive and
negative results for physiogenomic analysis. It is the con-
trast in statistical significance levels within each of the

LOESS plots for the lipid metabolism listed in order of genetic association significance, as follows: CETP, cholesteryl ester transfer protein, plasma, APOA1 apolipoprotein A-I, APOC3 apolipoprotein C-IIIFigure 4
LOESS plots for the lipid metabolism listed in order of genetic association significance, as follows: CETP, cholesteryl ester 
transfer protein, plasma, APOA1 apolipoprotein A-I, APOC3 apolipoprotein C-III. One SNP is shown per gene, with corre-
sponding significance level (p value), from Table 4. SNP rs5883 of the CETP gene was significantly associated with weight loss 
while the others were not. The x-axis is the same as in figure 1: change in body mass [kg].

LOESS plots for 3 glycogen synthase genes listed in order of genetic association significance, as follows: GYS2 glycogen syn-thase 2 (liver), GSK3B glycogen synthase kinase 3 beta, GYS1 glycogen synthase 1 (muscle)Figure 3
LOESS plots for 3 glycogen synthase genes listed in order of genetic association significance, as follows: GYS2 glycogen syn-
thase 2 (liver), GSK3B glycogen synthase kinase 3 beta, GYS1 glycogen synthase 1 (muscle). One SNP is shown per gene, with 
corresponding significance level (p value), from Table 4. SNP rs2306179 of the GYS2 gene was significantly associated with 
weight loss while the others were not. The x-axis is the same as in figure 1: change in body mass [kg].
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four functional groups pursued in this study that provides
the mechanistic insight. The associated gene markers can
be combined into SNP ensembles harnessing their com-
bined predictive power to estimate weight loss attainable
from carbohydrate restriction for each individual. The
SNP ensemble can then be tested retrospectively or pro-
spectively to assess its predictive diagnostic power in pop-
ulations separate from the ones used to generate the
model. We believe this approach is pivotal to the discov-
ery of multi-gene effects determining human dietary
response. Applications to the management of obesity and
diabetes include individualized counseling and dietary
choice based on innate capacity to react to various nutri-
tional regimens. We foresee the translation of these find-
ings to diagnostic systems for personalized diet.
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