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Chapter 1

Introduction

1.1 Preamble

This monograph was originally published as a series of four articles appearing in the Surveying and
Land Information Science. Each chapter corresponds to one of the original papers. This paper
should be cited as

Meyer, Thomas H., Roman, Daniel R., and Zilkoski, David B. (2005) What does height really
mean? Part 1: Introduction. In Surveying and Land Information Science, 64(4): 223-234.

This is the first paper in a four-part series considering the fundamental question, “what does the
word height really mean?” National Geodetic Survey (NGS) is embarking on a height modernization
program in which, in the future, it will not be necessary for NGS to create new or maintain old
orthometric height bench marks. In their stead, NGS will publish measured ellipsoid heights and
computed Helmert orthometric heights for survey markers. Consequently, practicing surveyors will
soon be confronted with coping with these changes and the differences between these types of height.
Indeed, although “height” is a commonly used word, an exact definition of it can be difficult to
find. These articles will explore the various meanings of height as used in surveying and geodesy
and present a precise definition that is based on the physics of gravitational potential, along with
current best practices for using survey-grade GPS equipment for height measurement. Our goal is
to review these basic concepts so that surveyors can avoid potential pitfalls that may be created
by the new NGS height control era. The first paper reviews reference ellipsoids and mean sea level
datums. The second paper reviews the physics of heights culminating in a simple development of
the geoid and explains why mean sea level stations are not all at the same orthometric height. The
third paper introduces geopotential numbers and dynamic heights, explains the correction needed
to account for the non-parallelism of equipotential surfaces, and discusses how these corrections
were used in NAVD 88. The fourth paper presents a review of current best practices for heights
measured with GPS.

1
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1.2 Preliminaries

The National Geodetic Survey (NGS) is responsible for the creation and maintenance of the United
State’s spatial reference framework. In order to address unmet spatial infrastructure issues, NGS
has embarked on a height modernization program whose “. . . most desirable outcome is a unified
national positioning system, comprised of consistent, accurate, and timely horizontal, vertical, and
gravity control networks, joined and maintained by the Global Positioning System (GPS) and
administered by the National Geodetic Survey” (National Geodetic Survey 1998). As a result of
this program, NGS is working with partners to maintain the National Spatial Reference System
(NSRS).

In the past, NGS performed high-accuracy surveys and established horizontal and/or vertical
coordinates in the form of geodetic latitude and longitude and orthometric height. The National
Geodetic Survey is responsible for the federal framework and is continually developing new tools and
techniques using new technology to more effectively and efficiently establish this framework, i.e.,
GPS and Continually Operating Reference System (CORS). The agency is working with partners
to transfer new technology so the local requirements can be performed by the private sector under
the supervision of the NGS (National Geodetic Survey 1998).

Instead of building new benchmarks, NGS has implemented a nation-wide network of continu-
ously operating global positioning system (GPS) reference stations known as the CORS, with the
intent that CORS shall provide survey control in the future. Although GPS excels at providing
horizontal coordinates, it cannot directly measure an orthometric height; GPS can only directly pro-
vide ellipsoid heights. However, surveyors and engineers seldom need ellipsoid heights, so NGS has
created highly sophisticated, physics-based, mathematical software models of the Earth’s gravity
field (Milbert 1991, Milbert & Smith 1996a, Smith & Milbert 1999, Smith & Roman 2001) that are
used in conjunction with ellipsoid heights to infer Helmert orthometric heights (Helmert 1890). As
a result, practicing surveyors, mappers, and engineers working in the United States may be working
with mixtures of ellipsoid and orthometric heights. Indeed, to truly understand the output of all
these height conversion programs, one must come to grips with heights in all their forms, including
elevations, orthometric heights, ellipsoid heights, dynamic heights, and geopotential numbers.

According to the Geodetic Glossary (National Geodetic Survey 1986), height is defined as, “The
distance, measured along a perpendicular, between a point and a reference surface, e.g., the height
of an airplane above the ground.” Although this definition seems to capture the intuition behind
height very well, it has a (deliberate) ambiguity regarding the reference surface (datum) from which
the measurement was made.

Heights fall broadly into two categories: those that employ the Earth’s gravity field as their
datum and those that employ a reference ellipsoid as their datum. Any height referenced to the
Earth’s gravity field can be called a “geopotential height,” and heights referenced to a reference
ellipsoid are called “ellipsoid heights.” These heights are not directly interchangeable; they are
referenced to different datums and, as will be explained in subsequence papers, in the absence of
site-specific gravitation measurements there is no rigorous transformation between them. This is a
situation analogous to that of the North American Datum of 1983 (NAD83) and the North American
Datum of 1927 (NAD27) - two horizontal datums for which there is no rigorous transformation.

The definitions and relationships between elevations, orthometric heights, dynamic heights,
geopotential numbers, and ellipsoid heights are not well understood by many practitioners. This is
perhaps not too surprising, given the bewildering amount of jargon associated with heights. The
NGS glossary contains 17 definitions with specializations for “elevation,” and 23 definitions with
specializations for “height,” although nine of these refer to other (mostly elevation) definitions. It
is the purpose of this series, then, to review these concepts with the hope that the reader will have
a better and deeper understanding of what the word “height” really means.
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1.2.1 The Series

The series consists of four papers that review vertical datums and the physics behind height mea-
surements, compare the various types of heights, and evaluate the current best practices for deduc-
ing orthometric heights from GPS measurements. Throughout the series we will enumerate figures,
tables, and equations with a Roman numeral indicating the paper in the series from which it came.
For example, the third figure in the second paper will be numbered, “Figure II.3”.

This first paper in the series is introductory. Its purpose is to explain why a series of this
nature is relevant and timely, and to present a conceptual framework for the papers that follow. It
contains a review of reference ellipsoids, mean sea level, and the U.S. national vertical datums.

The second paper is concerned with gravity. It presents a development of the Earth’s gravity
forces and potential fields, explaining why the force of gravity does not define level surfaces, whereas
the potential field does. The deflection of the vertical, level surfaces, the geoid, plumb lines, and
geopotential numbers are defined and explained.

It is well known that the deflection of the vertical causes loop misclosures for horizontal traverse
surveys. What seems to be less well known is that there is a similar situation for orthometric heights.
As will be discussed in the second paper, geoid undulations affect leveled heights such that, in the
absence of orthometric corrections, the elevation of a station depends on the path taken to the
station. This is one cause of differential leveling loop misclosure. The third paper in this series will
explain the causes of this problem and how dynamic heights are the solution.

The fourth paper of the series is a discussion of height determination using GPS. GPS mea-
surements that are intended to result in orthometric heights require a complicated set of datum
transformations, changing ellipsoid heights to orthometric heights. Full understanding of this pro-
cess and the consequences thereof requires knowledge of all the information put forth in this review.
As was mentioned above, NGS will henceforth provide the surveying community with vertical con-
trol that was derived using these methods. Therefore, we feel that practicing surveyors can benefit
from a series of articles whose purpose is to lay out the information needed to understand this
process and to use the results correctly.

The current article proceeds as follows. The next section provides a review of ellipsoids as they
are used in geodesy and mapping. Thereafter follows a review of mean sea level and orthometric
heights, which leads to a discussion of the national vertical datums of the United States. We
conclude with a summary.

1.3 Reference Ellipsoids

A reference ellipsoid, also called spheroid, is a simple mathematical model of the Earth’s
shape. Although low-accuracy mapping situations might be able to use a spherical model for the
Earth, when more accuracy is needed, a spherical model is inadequate, and the next more complex
Euclidean shape is an ellipsoid of revolution. An ellipsoid of revolution, or simply an “ellipsoid,”
is the shape that results from rotating an ellipse about one of its axes. Oblate ellipsoids are used
for geodetic purposes because the Earth’s polar axis is shorter than its equatorial axis.

1.3.1 Local Reference Ellipsoids

Datums and cartographic coordinate systems depend on a mathematical model of the Earth’s shape
upon which to perform trigonometric computations to calculate the coordinates of places on the
Earth and in order to transform between geocentric, geodetic, and mapping coordinates. The
transformation between geodetic and cartographic coordinates requires knowledge of the ellipsoid
being used, e.g., see (Bugayevskiy & Snyder 1995, Qihe, Snyder & Tobler 2000, Snyder 1987).
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Likewise, the transformation from geodetic to geocentric Cartesian coordinates is accomplished by
Helmert’s projection, which also depends on an ellipsoid (Heiskanen & Moritz 1967, pp. 181-184)
as does the inverse relationship; see Meyer (2002) for a review. Additionally, as mentioned above,
measurements taken with chains and transits must be reduced to a common surface for geodetic
surveying, and a reference ellipsoid provides that surface. Therefore, all scientifically meaningful
geodetic horizontal datums depend on the availability of a suitable reference ellipsoid.

Until recently, the shape and size of reference ellipsoids were established from extensive, continental-
sized triangulation networks (Gore 1889, Crandall 1914, Shalowitz 1938, Schwarz 1989, Dracup
1995, Keay 2000), although there were at least two different methods used to finally arrive at an
ellipsoid (the “arc” method for Airy 1830, Everest 1830, Bessel 1841 and Clarke 1866; and the
“area” method for Hayford 1909). The lengths of (at least) one starting and ending baseline were
measured with instruments such as rods, chains, wires, or tapes, and the lengths of the edges of
the triangles were subsequently propagated through the network mathematically by triangulation.

For early triangulation networks, vertical distances were used for reductions and typically came
from trigonometric heighting or barometric measurements although, for NAD 27, “a line of precise
levels following the route of the triangulation was begun in 1878 at the Chesapeake Bay and reached
San Francisco in 1907” (Dracup 1995). The ellipsoids deduced from triangulation networks were,
therefore, custom-fit to the locale in which the survey took place. The result of this was that each
region in the world thus measured had its own ellipsoid, and this gave rise to a large number of
them; see DMA (1995) and Meyer (2002) for a review and the parameters of many ellipsoids. It
was impossible to create a single, globally applicable reference ellipsoid with triangulation networks
due to the inability to observe stations separated by large bodies of water.

Local ellipsoids did not provide a vertical datum in the ordinary sense, nor were they used as
such. Ellipsoid heights are defined to be the distance from the surface of the ellipsoid to a point
of interest in the direction normal to the ellipsoid, reckoned positive away from the center of the
ellipsoid. Although this definition is mathematically well defined, it was, in practice, difficult to
realize for several reasons. Before GPS, all high-accuracy heights were measured with some form
of leveling, and determining an ellipsoid height from an orthometric height requires knowledge of
the deflection of the vertical, which is obtained through gravity and astronomical measurements
(Heiskanen & Moritz 1967, pp. 82-84).

Deflections of the vertical, or high-accuracy estimations thereof, were not widely available prior
to the advent of high-accuracy geoid models. Second, the location of a local ellipsoid was arbitrary
in the sense that the center of the ellipsoid need not coincide with the center of the Earth (geometric
or center of mass), so local ellipsoids did not necessarily conform to mean sea level in any obvious
way. For example, the center of the Clarke 1866 ellipsoid as employed in the NAD 27 datum is
now known to be approximately 236 meters from the center of the Global Reference System 1980
(GRS 80) as placed by the NAD83 datum. Consequently, ellipsoid heights reckoned from local
ellipsoids had no obvious relationship to gravity. This leads to the ever-present conundrum that,
in certain places, water flows “uphill,” as reckoned with ellipsoid heights (and this is still true even
with geocentric ellipsoids, as will be discussed below). Even so, some local datums (e.g., NAD 27,
Puerto Rico) were designed to be “best fitting” to the local geoid to minimize geoid heights, so in
a sense they were “fit” to mean sea level. For example, in computing plane coordinates on NAD
27, the reduction of distances to the ellipsoid was called the “Sea Level Correction Factor”!

In summary, local ellipsoids are essentially mathematical fictions that enable the conversion
between geocentric, geodetic, and cartographic coordinate systems in a rigorous way and, thus,
provide part of the foundation of horizontal geodetic datums, but nothing more. As reported by
Fischer (2004), “O’Keefe 1 tried to explain to me that conventional geodesy used the ellipsoid only

1John O’Keefe was the head of geodetic research at the Army Map Service.
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as a mathematical computation device, a set of tables to be consulted during processing, without
the slightest thought of a third dimension.”

1.3.2 Equipotential Ellipsoids

In contrast to local ellipsoids that were the product of triangulation networks, globally applicable
reference ellipsoids have been created using very long baseline interferometry (VLBI) for GRS 80
(Moritz 2000)), satellite geodesy for the World Geodetic System 1984 (WGS 84) (DMA 1995), along
with various astronomical and gravitational measurements. Very long baseline interferometry and
satellite geodesy permit high-accuracy baseline measurement between stations separated by oceans.
Consequently, these ellipsoids model the Earth globally; they are not fitted to a particular local
region. Both WGS 84 and GRS 80 have size and shape such that they are a best-fit model of the
geoid in a least-squares sense. Quoting Moritz (2000, p.128),

The Geodetic Reference System 1980 has been adopted at the XVII General Assembly of
the IUGG in Canberra, December 1979, by means of the following: . . . recognizing that
the Geodetic Reference System 1967 . . . no longer represents the size, shape, and gravity
field of the Earth to an accuracy adequate for many geodetic, geophysical, astronomical
and hydrographic applications and considering that more appropriate values are now
available, recommends . . . that the Geodetic Reference System 1967 be replaced by
a new Geodetic Reference System 1980, also based on the theory of the geocentric
equipotential ellipsoid, defined by the following constants:

• Equatorial radius of the Earth: a = 6378137 m;

• Geocentric gravitational constant of the Earth (including the atmosphere): GM =
3, 986, 005 × 108m3s−2;

• Dynamical form factor of the Earth, excluding the permanent tidal deformation:
J2 = 108, 263 × 10−8; and

• Angular velocity of the Earth: ω = 7292115 × 10−11rad s−1.

Clearly, equipotential ellipsoid models of the Earth constitute a significant logical departure
from local ellipsoids. Local ellipsoids are purely geometric, whereas equipotential ellipsoids include
the geometric but also concern gravity. Indeed, GRS 80 is called an “equipotential ellipsoid”
(Moritz 2000) and, using equipotential theory together with the defining constants listed above,
one derives the flattening of the ellipsoid rather than measuring it geometrically. In addition to
the logical departure, datums that employ GRS 80 and WGS 84 (e.g., NAD 83, ITRS, and WGS
84) are intended to be geocentric, meaning that they intend to place the center of their ellipsoid at
the Earth’s center of gravity. It is important to note, however, that NAD 83 currently places the
center of GRS 80 roughly two meters away from the center of ITRS and that WGS 84 is currently
essentially identical to ITRS.

Equipotential ellipsoids are both models of the Earth’s shape and first-order models of its
gravity field. Somiglinana (1929) developed the first rigorous formula for normal gravity (also, see
Heiskanen & Moritz (1967, p. 70, eq. 2-78)) and the first internationally accepted equipotential
ellipsoid was established in 1930. It had the form:

g0 = 9.78046(1 + 0.0052884 sin2 φ − 0.0000059 sin2 2φ) (1.1)

where
g0 = acceleration due to gravity at a distance 6,378,137 m from the center of the idealized

Earth; and
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Figure 1.1: The difference in normal gravity between the 1930 International Gravity Formula and
WGS 84. Note that the values on the abscissa are given 10,000 times the actual difference for
clarity

φ = geodetic latitude (Blakely 1995, p.135).
The value g0 is called theoretical gravity or normal gravity. The dependence of this formula
on geodetic latitude will have consequences when closure errors arise in long leveling lines that
run mostly north-south compared to those that run mostly east-west. The most modern reference
ellipsoids are GRS 80 and WGS 84. As given by (Blakely 1995, p.136), the closed-form formula for
WGS 84 normal gravity is:

g0 = 9.7803267714
1 + 0.00193185138639 sin2 φ√
1 − 0.00669437999013 sin2 φ

(1.2)

Figure 1.1 shows a plot of the difference between Equation 1.1 and Equation 1.2. The older model
has a larger value throughout and has, in the worst case, a magnitude greater by 0.000163229 m/s2

(i.e., about 16 mgals) at the equator.

1.3.3 Equipotential Ellipsoids as Vertical Datums

Concerning the topic of this paper, perhaps the most important consequence of the differences
between local and equipotential ellipsoids is that equipotential ellipsoids are more suitable to be
used as vertical datums in the ordinary sense than local ellipsoids and, in fact, they are used as
such. In particular, GPS-derived coordinates expressed as geodetic latitude and longitude present
the third dimension as an ellipsoid height. This constitutes a dramatic change from the past. Before,
ellipsoid heights were essentially unheard of, basically only of interest and of use to geodesists for
computational purposes. Now, anyone using a GPS is deriving ellipsoid heights.

Equipotential ellipsoids are models of the gravity that would result from a highly idealized
model of the Earth; one whose mass is distributed homogeneously but includes the Earth’s oblate
shape, and spinning like the Earth. The geoid is not a simple surface compared to an equipotential
ellipsoid, which can be completely described by just the four parameters listed above. The geoid’s
shape is strongly influenced by the topographic surface of the Earth. As seen in Figure 1.2, the geoid
appears to be “bumpy,” with apparent mountains, canyons, and valleys. This is, in fact, not so. The
geoid is a convex surface by virtue of satisfying the Laplace equation, and its apparent concavity is
a consequence of how the geoid is portrayed on a flat surface (Vańıček & Krakiwsky 1986). Figure
1.2 is a portrayal of the ellipsoid height of the geoid as estimated by GEOID 03 (Roman, Wang,
Henning, & Hamilton 2004). That is to say, the heights shown in the figure are the distances from
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Figure 1.2: Geoid heights with respect to NAD 83/GRS 80 over the continental United States as
computed by GEOID03. Source: (NGS 2003).
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GRS 80 as located by NAD 83 to the geoid; the ellipsoid height of the geoid. Such heights (the
ellipsoid height of a place on the geoid) are called geoid heights. Thus, Figure 1.2 is a picture of
geoid heights.

Even though equipotential ellipsoids are useful as vertical datums, they are usually unsuitable as
a surrogate for the geoid when measuring orthometric heights. Equipotential ellipsoids are “best-
fit” over the entire Earth and, consequently, they typically do not match the geoid particularly
well in any specific place. For example, as shown in Figure 1.2, GRS 80 as placed by NAD 83
is everywhere higher than the geoid across the conterminous United States; not half above and
half below. Furthermore, as described above, equipotential ellipsoids lack the small-scale details
of the geoid. And, like local ellipsoids, ellipsoid heights reckoned from equipotential ellipsoids also
suffer from the phenomenon that there are places where water apparently flows “uphill,” although
perhaps not as badly as some local ellipsoids. Therefore, surveyors using GPS to determine heights
would seldom want to use ellipsoid heights. In most cases, surveyors need to somehow deduce an
orthometric height from an ellipsoid height, which will be discussed in the following papers.

1.4 Mean Sea Level

One of the ultimate goals of this series is to present a sufficiently complete presentation of orthomet-
ric heights that the following definition will be clear. In the NGS Glossary, the term orthometric
height is referred to elevation, orthometric, which is defined as, “The distance between the
geoid and a point measured along the plumb line and taken positive upward from the geoid.” For
contrast, we quote from the first definition for elevation:

The distance of a point above a specified surface of constant potential; the distance is
measured along the direction of gravity between the point and the surface.
The surface usually specified is the geoid or an approximation thereto. Mean sea level
was long considered a satisfactory approximation to the geoid and therefore suitable for
use as a reference surface. It is now known that mean sea level can differ from the geoid
by up to a meter or more, but the exact difference is difficult to determine.
The terms height and level are frequently used as synonyms for elevation. In geodesy,
height also refers to the distance above an ellipsoid. . .

It happens that lying within these two definitions is a remarkably complex situation primarily
concerned with the Earth’s gravity field and our attempts to make measurements using it as a
frame of reference. The terms geoid, plumb line, potential, mean sea level have arisen, and
they must be addressed before discussing orthometric heights.

For heights, the most common datum is mean sea level. Using mean sea level for a height datum
is perfectly natural because most human activity occurs at or above sea level. However, creating a
workable and repeatable mean sea level datum is somewhat subtle. The NGS Glossary definition
of mean sea level is “The average location of the interface between ocean and atmosphere, over a
period of time sufficiently long so that all random and periodic variations of short duration average
to zero.”

The National Oceanic and Atmospheric Administration’s (NOAA) National Ocean Service
(NOS) Center for Operational Oceanographic Products and Services (CO-OPS) has set 19 years
as the period suitable for measurement of mean sea level at tide gauges (National Geodetic
Survey 1986, p. 209). The choice of 19 years was chosen because it is the smallest integer number
of years larger than the first major cycle of the moon’s orbit around the Earth. This accounts for
the largest of the periodic effects mentioned in the definition. See Bomford (1980, pp. 247-255)
and Zilkoski (2001) for more details about mean sea level and tides. Local mean sea level is often
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Figure 1.3: The design of a NOAA tide house and tide gauge used for measuring mean sea level.
Source: (NOAA 2007).

measured using a tide gauge. Figure 1.3 depicts a tide house, “a structure that houses instruments
to measure and record the instantaneous water level inside the tide gauge and built at the edge of
the body of water whose local mean level is to be determined.”

It has been suspected at least since the time of the building of the Panama Canal that mean
sea level might not be at the same height everywhere (McCullough 1978). The original canal,
attempted by the French, was to be cut at sea level and there was concern that the Pacific Ocean
might not be at the same height as the Atlantic, thereby causing a massive flood through the cut.
This concern became irrelevant when the sea level approach was abandoned. However, the subject
surfaced again in the creation of the National Geodetic Vertical Datum of 1929 (NGVD 29).

By this time it was a known fact that not all mean sea-level stations were the same height,
a proposition that seems absurd on its face. To begin with, all mean sea-level stations are at an
elevation of zero by definition. Second, water seeks its own level, and the oceans have no visible
constraints preventing free flow between the stations (apart from the continents), so how could it
be possible that mean sea level is not at the same height everywhere? The answer lies in differences
in temperature, chemistry, ocean currents, and ocean eddies.

The water in the oceans is constantly moving at all depths. Seawater at different temperatures
contains different amounts of salt and, consequently, has density gradients. These density gradients
give rise to immense deep-ocean cataracts that constantly transport massive quantities of water from
the poles to the tropics and back (Broecker 1983, Ingle 2000, Whitehead 1989). The sun’s warming
of surface waters causes the global-scale currents that are well-known to mariners in addition to
other more subtle effects (Chelton, Schlax, Freilich & Milliff 2004). Geostrophic effects cause large-
scale, persistent ocean eddies that push water against or away from the continents, depending on
the direction of the eddy’s circulation. These effects can create sea surface topographic variations of
more than 50 centimeters (Srinivasan 2004). As described by Zilkoski (2001, p.40), the differences
are due to “. . . currents, prevailing winds and barometric pressures, water temperature and salinity
differentials, topographic configuration of the bottom in the area of the gauge site, and other
physical causes . . .”
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In essence, these factors push the water and hold it upshore or away-from-shore further than
would be the case under the influence of gravity alone. Also, the persistent nature of these climatic
factors prevents the elimination of their effect by averaging (e.g., see (Speed, Jr., Newton & Smith
1996b, Speed, Jr., Newton & Smith 1996a)). As will be discussed in more detail in the second
paper, this gives rise to the seemingly paradoxical state that holding one sea-level station as a zero
height reference and running levels to another station generally indicates that the other station is
not also at zero height, even in the absence of experimental error and even if the two stations are at
the same gravitational potential. Similarly, measuring the height of an inland benchmark using two
level lines that start from different tide gauges generally results in two statistically different height
measurements. These problems were addressed in different ways by the creation of two national
vertical datums, NGVD 29 and North American Vertical Datum of 1988 (NAVD 88). We will now
discuss the national vertical datums of the United States.

1.5 U.S. National Vertical Datums

The first leveling route in the United States considered to be of geodetic quality was established in
1856-57 under the direction of G.B. Vose of the U.S. Coast Survey, predecessor of the U.S. Coast
and Geodetic Survey and, later, the National Ocean Service.2 The leveling survey was needed to
support current and tide studies in the New York Bay and Hudson River areas. The first leveling
line officially designated as “geodesic leveling” by the Coast and Geodetic Survey followed an arc
of triangulation along the 39th parallel. This 1887 survey began at benchmark A in Hagerstown,
Maryland.

By 1900, the vertical control network had grown to 21,095 km of geodetic leveling. A reference
surface was determined in 1900 by holding elevations referenced to local mean sea level (LMSL)
fixed at five tide stations. Data from two other tide stations indirectly influenced the determination
of the reference surface. Subsequent readjustments of the leveling network were performed by the
Coast and Geodetic Survey in 1903, 1907, and 1912 (Berry 1976).

1.5.1 National Geodetic Vertical Datum of 1929 (NGVD 29)

The next general adjustment of the vertical control network, called the Sea Level Datum of 1929
and later renamed to the National Geodetic Vertical Datum of 1929 (NGVD 29), was accom-
plished in 1929. By then, the international nature of geodetic networks was well understood, and
Canada provided data for its first-order vertical network to combine with the U.S. network. The
two networks were connected at 24 locations through vertical control points (benchmarks) from
Maine/New Brunswick to Washington/British Columbia. Although Canada did not adopt the
“Sea Level Datum of 1929” determined by the United States, Canadian-U.S. cooperation in the
general adjustment greatly strengthened the 1929 network. Table 1.1 lists the kilometers of leveling
involved in the readjustments and the number of tide stations used to establish the datums.

It was mentioned above that NGVD 29 was originally called the “Sea Level Datum of 1929.”
To eliminate some of the confusion caused by the original name, in 1976 the name of the datum was
changed to “National Geodetic Vertical Datum of 1929,” eliminating all reference to “sea level” in
the title. This was a change in name only; the mathematical and physical definitions of the datum
established in 1929 were not changed in any way.

2This section consists of excerpts from Chapter 2 of Maune’s (2001) Vertical Datums.
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Year of Adjustment Kilometers of Leveling Number of Tide Stations
1900 21095 5
1903 31789 8
1907 38359 8
1912 46468 9
1929 75159 (U.S.) 21 (U.S.)

31565 (Canada) 5 (Canada)

Table 1.1: Amount of leveling and number of tide stations involved in previous readjustments.

1.5.2 North American Vertical Datum of 1988 (NAVD 88)

The most recent general adjustment of the U.S. vertical control network, which is known as the
North American Vertical Datum of 1988 (NAVD 88), was completed in June 1991 (Zilkoski,
Richards & Young 1992). Approximately 625,000 km of leveling have been added to the NSRS
since NGVD 29 was created. In the intervening years, discussions were held periodically to deter-
mine the proper time for the inevitable new general adjustment. In the early 1970s, the National
Geodetic Survey conducted an extensive inventory of the vertical control network. The search
identified thousands of benchmarks that had been destroyed, due primarily to post-World War II
highway construction, as well as other causes. Many existing benchmarks were affected by crustal
motion associated with earthquake activity, post-glacial rebound (uplift), and subsidence resulting
from the withdrawal of underground liquids.

An important feature of the NAVD 88 program was the re-leveling of much of the first-order
NGS vertical control network in the United States. The dynamic nature of the network requires
a framework of newly observed height differences to obtain realistic, contemporary height values
from the readjustment. To accomplish this, NGS identified 81,500 km (50,600 miles) for re-leveling.
Replacement of disturbed and destroyed monuments preceded the actual leveling. This effort also
included the establishment of stable “deep rod” benchmarks, which are now providing reference
points for new GPS-derived orthometric height projects as well as for traditional leveling projects.
The general adjustment of NAVD 88 consisted of 709,000 unknowns (approximately 505,000 per-
manently monumented benchmarks and 204,000 temporary benchmarks) and approximately 1.2
million observations.

Analyses indicate that the overall differences for the conterminous United States between or-
thometric heights referred to NAVD 88 and NGVD 29 range from 40 cm to +150 cm. In Alaska
the differences range from approximately +94 cm to +240 cm. However, in most “stable” areas,
relative height changes between adjacent benchmarks appear to be less than 1 cm. In many areas, a
single bias factor, describing the difference between NGVD 29 and NAVD 88, can be estimated and
used for most mapping applications (NGS has developed a program called VERTCON to convert
from NGVD 29 to NAVD 88 to support mapping applications). The overall differences between
dynamic heights referred to International Great Lakes Datum of 1985 (IGLD 85) and IGLD 55
range from 1 cm to 37 cm.

1.5.3 International Great Lakes Datum of 1985 (IGLD 85)

For the general adjustment of NAVD 88 and the International Great Lakes Datum of 1985 (IGLD
85), a minimum constraint adjustment of Canadian-Mexican-U.S. leveling observations was per-
formed. The height of the primary tidal benchmark at Father Point/Rimouski, Quebec, Canada
(also used in the NGVD 1929 general adjustment), was held fixed as the constraint. Therefore,
IGLD 85 and NAVD 88 are one and the same. Father Point/Rimouski is an IGLD water-level
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station located at the mouth of the St. Lawrence River and is the reference station used for IGLD
85. This constraint satisfied the requirements of shifting the datum vertically to minimize the im-
pact of NAVD 88 on U.S. Geological Survey (USGS) mapping products, and it provides the datum
point desired by the IGLD Coordinating Committee for IGLD 85. The only difference between
IGLD 85 and NAVD 88 is that IGLD 85 benchmark values are given in dynamic height units,
and NAVD 88 values are given in Helmert orthometric height units. Geopotential numbers for
individual benchmarks are the same in both systems (the next two papers will explain dynamic
heights, geopotential numbers, and Helmert orthometric heights).

1.5.4 Tidal Datums

Principal Tidal Datums

A vertical datum is called a tidal datum when it is defined by a certain phase of the tide. Tidal
datums are local datums and are referenced to nearby monuments. Since a tidal datum is defined
by a certain phase of the tide there are many different types of tidal datums. This section will
discuss the principal tidal datums that are typically used by federal, state, and local government
agencies: Mean Higher High Water (MHHW), Mean High Water (MHW), Mean Sea Level (MSL),
Mean Low Water (MLW), and Mean Lower Low Water (MLLW).

A determination of the principal tidal datums in the United States is based on the average of
observations over a 19-year period, e.g., 1988-2001. A specific 19-year Metonic cycle is denoted as
a National Tidal Datum Epoch (NTDE). CO-OPS publishes the official United States local mean
sea level values as defined by observations at the 175 station National Water Level Observation
Network (NWLON). Users need to know which NTDE their data refer to.

• Mean Higher High Water (MHHW): MHHW is defined as the arithmetic mean of the higher
high water heights of the tide observed over a specific 19-year Metonic cycle denoted as the
NTDE. Only the higher high water of each pair of high waters of a tidal day is included
in the mean. For stations with shorter series, a comparison of simultaneous observations is
made with a primary control tide station in order to derive the equivalent of the 19-year value
(Marmer 1951).

• Mean High Water (MHW) is defined as the arithmetic mean of the high water heights observed
over a specific 19-year Metonic cycle. For stations with shorter series, a computation of
simultaneous observations is made with a primary control station in order to derive the
equivalent of a 19-year value (Marmer 1951).

• Mean Sea Level (MSL) is defined as the arithmetic mean of hourly heights observed over a
specific 19-year Metonic cycle. Shorter series are specified in the name, such as monthly mean
sea level or yearly mean sea level (e.g., (Marmer 1951, Hicks 1985)).

• Mean Low Water (MLW) is defined as the arithmetic mean of the low water heights observed
over a specific 19-year Metonic cycle. For stations with shorter series, a comparison of si-
multaneous observations is made with a primary control tide station in order to derive the
equivalent of a 19-year value (Marmer 1951).

• Mean Lower Low Water (MLLW) is defined as the arithmetic mean of the lower low water
heights of the tide observed over a specific 19-year Metonic cycle. Only the lower low water
of each pair of low waters of a tidal day is included in the mean. For stations with shorter
series, a comparison of simultaneous observations is made with a primary control tide station
in order to derive the equivalent of a 19-year value (Marmer 1951).
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PBM 180 1946 —– 5.794 m (the Primary Bench Mark)
Highest Water Level —– 4.462 m

MHHW —– 3.536 m
MHW —– 3.353 m
MTL —– 2.728 m
MSL —– 2.713 m
DTL —– 2.646 m

NGVD 1929 —– 2.624 m
MLW —– 2.103 m

NAVD 88 —– 1.802 m
MLLW —– 1.759 m

Lowest Water Level —– 0.945 m

Table 1.2: Various Tidal Datums and Vertical Datums for PBM 180 1946.

Other Tidal Datums

Other tidal values typically computed include the Mean Tide Level (MTL), Diurnal Tide Level
(DTL), Mean Range (Mn), Diurnal High Water Inequality (DHQ), Diurnal Low Water Inequality
(DLQ), and Great Diurnal Range (Gt).

• Mean Tide Level (MTL) is a tidal datum which is the average of Mean High Water and Mean
Low Water.

• Diurnal Tide Level (DTL) is a tidal datum which is the average of Mean Higher High Water
and Mean Lower Low Water.

• Mean Range (Mn) is the difference between Mean High Water and Mean Low Water.

• Diurnal High Water Inequality (DHQ) is the difference between Mean Higher High Water
and Mean High Water.

• Diurnal Low Water Inequality (DLQ) is the difference between Mean Low Water and Mean
Lower Low Water.

• Great Diurnal Range (Gt) is the difference between Mean Higher High Water and Mean
Lower Low Water.

All of these tidal datums and differences have users that need a specific datum or difference for
their particular use. The important point for users is to know which tidal datum their data are
referenced to. Like geodetic vertical datums, local tidal datums are all different from one another,
but they can be related to each other. The relationship of a local tidal datum (941 4290, San
Francisco, California) to geodetic datums is illustrated in Table 1.2.

Please note that in this example, NAVD 88 heights, which are the official national geodetic
vertical control values, and LMSL heights, which are the official national local mean sea level
values, at the San Francisco tidal station differ by almost one meter. Therefore, if a user obtained
a set of heights relative to the local mean sea level and a second set referenced to NAVD 88, the
two sets would disagree by about one meter due to the datum difference. In addition, the difference
between MHW and MLLW is more than 1.5 m (five feet). Due to regulations and laws, some users
relate their data to MHW, while others relate their data to MLLW. As long as a user knows which
datum the data are referenced to, the data can be converted to a common reference and the data
sets can be combined.
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1.6 Summary

This is the first in a four-part series of papers that will review the fundamental concept of height.
The National Geodetic Survey will not, in the future, create or maintain elevation benchmarks by
leveling. Instead, NGS will assign vertical control by estimating orthometric heights from ellipsoid
heights as computed from GPS measurements. This marks a significant shift in how the United
States’ vertical control is created and maintained. Furthermore, practicing surveyors and mappers
who use GPS are now confronted with using ellipsoid heights in their everyday work, something that
was practically unheard of before GPS. The relationship between ellipsoid heights and orthometric
heights is not simple, and it is the purpose of this series of papers to examine that relationship.

This first paper reviewed reference ellipsoids and mean sea level datums. Reference ellipsoids
are models of the Earth’s shape and fall into two distinct categories: local and equipotential. Local
reference ellipsoids were created by continental-sized triangulation networks and were employed as
a computational surface but not as a vertical datum in the ordinary sense. Local reference ellipsoids
are geometric in nature; their size and shape were determined by purely geometrical means. They
were also custom-fit to a particular locale due to the impossibility of observing stations separated by
oceans. Equipotential ellipsoids include the geometric considerations of local reference ellipsoids,
but they also include information about the Earth’s mass and rotation. They model the mean
sea level equipotential surface that would result from both the redistribution of the Earth’s mass
caused by its rotation, as well as the centripetal effect of the rotation. It is purely a mathematical
construct derived from observed physical parameters of the Earth. Unlike local reference ellipsoids,
equipotential ellipsoids are routinely used as a vertical datum. Indeed, all heights directly derived
from GPS measurements are ellipsoid heights.

Even though equipotential ellipsoids are used as vertical datums, most practicing surveyors and
mappers use orthometric heights, not ellipsoid heights. The first national mean sea level datum
in the United States was the NGVD 29. NGVD 29 heights were assigned to fiducial benchmarks
through a least-squares adjustment of local height networks tied to separate tide gauges around the
nation. It was observed at that time that mean sea level was inconsistent through these stations on
the order of meters, but the error was blurred through the network statistically. The most recent
general adjustment of the U.S. network, which is known as NAVD 88, was completed in June 1991.
Only a single tide gauge was held fixed in NAVD 88 and, consequently, the inconsistencies between
tide gauges were not distributed through the network adjustment, but there will be a bias at each
mean sea level station between NAVD 88 level surface and mean sea level.



Chapter 2

Physics and Gravity

2.1 Preamble

This monograph was originally published as a series of four articles appearing in the Surveying and
Land Information Science. Each chapter corresponds to one of the original papers1. This paper
should be cited as

Meyer, Thomas H., Roman, Daniel R., and Zilkoski, David B. (2005) What does height really
mean? Part II: Physics and Gravity. In Surveying and Land Information Science, 65(1): 5-15.

This is the second paper in a four-part series considering the fundamental question, “what does
the word height really mean?” The first paper in this series explained that a change in National
Geodetic Survey’s policy, coupled with the modern realities of GPS surveying, have essentially
forced practicing surveyors to come to grips with the myriad of height definitions that previously
were the sole concern of geodesists. The distinctions between local and equipotential ellipsoids were
considered, along with an introduction to mean sea level. This paper brings these ideas forward
by explaining mean sea level and, more importantly, the geoid. The discussion is grounded in
physics from which gravitational force and potential energy will be considered, leading to a simple
derivation of the shape of the Earth’s gravity field. This lays the foundation for a simplistic model
of the geoid near Mt. Everest, which will be used to explain the undulations in the geoid across the
entire Earth. The terms geoid, plumb line, potential, equipotential surface, geopotential
number, and mean sea level will be explained, including a discussion of why mean sea level is
not everywhere the same height; why it is not a level surface.

2.2 Introduction: Why Care About Gravity?

Any instrument that needs to be leveled in order to properly measure horizontal and vertical angles
depends on gravity for orientation. Surveying instruments that measure gravity-referenced heights
depend upon gravity to define their datum. Thus, many surveying measurements depend upon and
are affected by gravity. This second paper in the series will develop the physics of gravity, leading
to an explanation of the geoid and geopotential numbers.

The direction of the Earth’s gravity field stems from the Earth’s rotation and the mass distri-
bution of the planet. The inhomogeneous distribution of that mass causes what are known as geoid
undulations, the geoid being defined by the National Geodetic Survey (1986) as ‘The equipotential
surface of the Earth’s gravity field which best fits, in a least squares sense, global mean sea level.”

1Throughout the series we will enumerate figures, tables, and equations with an Arabic numeral indicating the
paper in the series from which it came. For example, the third figure in the second paper will be numbered, “Figure
2.3”.

15



16 CHAPTER 2. PHYSICS AND GRAVITY

The geoid is also called the “figure of the Earth.” Quoting Shalowitz (1938, p. 10), “The true
figure of the Earth, as distinguished from its topographic surface, is taken to be that surface which
is everywhere perpendicular to the direction of the force of gravity and which coincides with the
mean surface of the oceans.” The direction of gravity varies in a complicated way from place to
place. Local vertical remains perpendicular to this undulating surface, whereas local normal re-
mains perpendicular to the ellipsoid reference surface. The angular difference of these two is the
deflection of the vertical.

The deflection of the vertical causes angular traverse loop misclosures, as do instrument setup
errors, the Earth’s curvature, and environmental factors introducing errors into measurements.
The practical consequence of the deflection of the vertical is that observed angles differ from the
angles that result from the pure geometry of the stations. It is as if the observing instrument
were misleveled, resulting in traverses that do not close. This is true for both plane and geodetic
surveying, although the effect for local surveys is seldom measurable because geoid undulations
are smooth and do not vary quickly over small distances. Even so, it should be noted that the
deflection of the vertical can cause unacceptable misclosures even over short distances.

For example, Shalowitz (1938, pp. 13,14) reported deflections of the vertical created discrep-
ancies between astronomic coordinates and geodetic (computed) coordinates up to a minute of
latitude in Wyoming. In all cases, control networks for large regions cannot ignore these discrep-
ancies, and remain geometrically consistent, especially in and around regions of great topographic
relief. Measurements made using a gravitational reference frame are reduced to the surface of
a reference ellipsoid to remove the effects of the deflection of the vertical, skew of the normals,
topographic enlargement of distances, and other environmental effects (Meyer 2002).

The first article in this series introduced the idea that mean sea level is not at the same height
in all places. This fact led geodesists to a search for a better surface than mean sea level to
serve as the datum for vertical measurements, and that surface is the geoid. Coming to a deep
understanding of the geoid requires a serious inquiry (Blakely 1995, Bomford 1980, Heiskanen &
Moritz 1967, Kellogg 1953, Ramsey 1981, Torge 1997, Vańıček & Krakiwsky 1986), but the concepts
behind the geoid can be developed without having to examine all the details. The heart of the
matter lies in the relationship between gravitational force and gravitational potential. Therefore,
we review the concepts of force, work, and energy so as to develop the framework to consider this
relationship.

2.3 Physics

2.3.1 Force, Work, and Energy

Force is what makes things go. This is apparent from Newton’s law, F = ma, which gives that
the acceleration of an object is caused by, and is in the direction of, a force F and is inversely
proportional to the object’s mass m. Force has magnitude (i.e., strength) and direction. Therefore,
a force is represented mathematically as a vector whose length and direction are set equal to those
of the force. We denote vectors in bold face, either upper or lower case, e.g., F or f, and scalars
in standard face, e.g., the speed of light is commonly denoted as c. Force has units of mass times
length per second squared and is named the “newton,” abbreviated N, in the meter-kilogram-second
(mks) system.

There is a complete algebra and calculus of vectors (e.g., see (Davis & Snider 1979) or (Marsden
& Tromba 1988)), which will not be reviewed here. However, we remind the reader of certain key
concepts. Vectors are ordered sets of scalar components, e.g., (x, y, z) or F = (F1, F2, F3), and we
take the magnitude of a vector, which we denote as |F|, to be the square root of the sum of the
components: For example, if F = (1,−4, 2), then |F| =

√
12 + (−4)2 + 22 =

√
21.
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Vectors can be multiplied by scalars (e.g., c A) and, in particular, the negative of a vector is
defined as the scalar product of minus one with the vector: -A = -1 A. It is easy to show that
-A is a vector of magnitude equal to A but oriented in the opposite direction. Division of vectors
by scalars is simply scalar multiplication by a reciprocal: F/c = (1/c) F. A vector F divided by
its own length results in a unit vector, being a vector in the same direction as F but having unit
length-a length of exactly one. We denote a unit vector with a hat: F̂ = F/|F|.

Vectors can be added (e.g., A + B) and subtracted, although subtraction is defined in terms
of scalar multiplication by -1 and vector addition (i.e., A − B = A + (−B)). The result of
adding/subtracting two vectors is another vector; likewise with scalar multiplication. By virtue of
vector addition (the law of superposition), any vector can be a composite of any finite number of
vectors: F =

∑n
i=1 fi, n < ∞.

The inner or scalar product of two vectors a.b is defined as:

a.b = |a| × b| cos θ (2.1)

where θ is the angle between a and b in the plane that contains them. In particular, note that
if a is perpendicular to b, then a.b = 0 because cos 90◦ = 0. We will make use of the fact that
the inner product of a force vector with a unit vector is a scalar equal to the magnitude of the
component of the force that is applied in the direction of the unit vector.

Newton’s law of gravity specifies that the gravitational force exerted by a mass M on a mass
m is:

Fg = −GMmr̂
|r|2 (2.2)

where:
G = universal gravitational constant; and
r = a vector from M ’s center of mass to m’s center of mass.
The negative sign accounts for gravity being an attractive force by orienting Fg in the direction
opposite of r̂ (since r̂ is the unit vector from M to m, Fg needs to be directed from m to M). In light
of the discussion above about vectors, Equation 2.2 is understood to indicate that the magnitude
of gravitational force is in proportion to the masses of the two objects, inversely proportional to
the square of the distance separating them, and is directed along the straight line joining their
centroids.

In geodesy, M usually denotes the mass of the Earth and, consequently, the product GM
arises frequently. Although the values for G and M are known independently (G has a value of
approximately 6.67259×10−11 m3 s−2 kg−1 and M is approximately 5.9737×1024 kg), their product
can be measured as a single quantity and its value has been determined to have several, nearly
identical values, such as GM = 398600441.5 ± 0.8 × 106 m3 s2 (Groten 2004).

Gravity is a force field, meaning that the gravity created by any mass permeates all of space.
One consequence of superposition is that gravity fields created by different masses are independent
of one another. Therefore, it is reasonable and convenient to consider the gravitational field created
by a single mass without taking into consideration any objects within that field. Equation 2.2 can
be modified to describe a gravitational field simply by omitting m. We can compute the strength
of the Earth’s gravitational field at a distance equal to the Earth’s equatorial radius (6,378,137 m)
from the center of M by:

Eg = −GM r̂
|r|2 (2.3)

= −398600441.5 m3s2r̂
(6378137 m/s)2

= 9.79829 m/s2(−r̂) (2.4)



18 CHAPTER 2. PHYSICS AND GRAVITY

Figure 2.1: The gravitational force field of a spherical Earth. Note that the magnitude of the force
decreases with separation from the Earth.

This value is slightly larger than the well-known value of 9.78033 m/s2 because the latter includes
the effect of the Earth’s rotation.2 We draw attention to the fact that Equation 2.3 has units of
acceleration, not a force, by virtue of having omitted m.

It is possible to use Equation 2.3 to draw a picture that captures, to some degree, the shape
of the Earth’s gravitational field (see Figure 2.1. The vectors in the figure indicate the magnitude
and direction of force that would be experienced by unit mass located at that point in space.
The vectors decrease in length as distance increases away from the Earth and are directly radially
toward the Earth’s center, as expected. However, we emphasize that the Earth’s gravitational field
pervades all of space; it is not discrete as the figure suggests. Furthermore, it is important to realize
that, in general, any two points in space experience a different gravitational force, if perhaps only
in direction.

We remind the reader that the current discussion is concerned with finding a more suitable
vertical datum than mean sea level, which is, in some sense, the same thing as finding a better way
to measure heights. Equation 2.3 suggests that height might be inferred by measuring gravitational
force because Equation 2.3 can be solved for the magnitude of r, which would be a height measured
using the Earth’s center of gravity as its datum. At first, this approach might seem to hold promise
because the acceleration due to gravity can be measured with instruments that carefully measure
the acceleration of a standard mass, either as a pendulum or free falling (Faller & Vitouchkine 2003).
It seems such a strategy would deduce height in a way that stems from the physics that give rise
to water’s downhill motion and, therefore, would capture the primary motivating concept behind
height very well. Regrettably, this is not the case and we will now explain why.

2The gravity experienced on and around the Earth is a combination of the gravitation produced by the Earth’s
mass and the centrifugal force created by its rotation. The force due solely to the Earth’s mass is called gravitational
and the combined force is called gravity. For the most part, it will not be necessary for the purposes of this paper
to draw a distinction between the two. The distinction will be emphasized where necessary.
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Figure 2.2: A collection of force vectors that are all normal to a surface (indicated by the horizontal
line) but of differing magnitudes. The horizontal line is a level surface because all the vectors are
normal to it; they have no component directed across the surface.

Suppose we use gravitational acceleration as a means of measuring height. This implies that
surfaces of equal acceleration must also be level surfaces, meaning a surface across which water
does not run without external impetus. Thus, our mean sea level surrogate is that set of places
that experience some particular gravitational acceleration; perhaps the acceleration of the normal
gravity model, g0, would be a suitable value. The fallacy in this logic comes from the inconsideration
of gravity as a vector; it is not just a scalar. In fact, the heart of the matter lies not in the magnitude
of gravity but, rather, in its direction.

If a surface is level, then water will not flow across it due to the influence of gravity alone.
Therefore, a level surface must be situated such that all gravity force vectors at the surface are
perpendicular to it; none of the force vectors can have any component directed across the surface.
Figure 2.2 depicts a collection of force vectors that are mutually perpendicular to a horizontal
surface, so the horizontal surface is level, but the vectors have differing magnitudes. Therefore, it
is apparent that choosing a surface of equal gravitational acceleration (i.e., magnitude) does not
guarantee that the surface will be level. Of course, we have not shown that this approach necessarily
would not produce level surfaces. It might be the case that it happens that the magnitude of gravity
acceleration vectors just happen to be equal on level surfaces. However, as we will show below, this
is not the case due to the inhomogeneous distribution of mass within the Earth.

We can use this idea to explain why the surface of the oceans is not everywhere the same
distance to the Earth’s center of gravity. The first article in this series noted several reasons for
this, but we will discuss only one here. It is known that the salinity in the oceans is not constant.
Consequently, the density of the water in the oceans is not constant, either, because it depends on
the salinity. Suppose we consider columns of water along a coast line and suppose that gravitational
acceleration is constant along the coasts (see Figure 2.3). In particular, consider the columns A
and B. Suppose the water in column A is less dense than in column B; perhaps a river empties into
the ocean at that place. We have assumed or know that:

• The force of gravity is constant,

• The columns of water must have the same weight in order to not flow, and

• The water in column A is less dense than that in column B.

It takes more water of lesser density to have the same mass as the amount of water needed of
greater density. Water is nearly incompressible, so the water column at A must be taller than the
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A

B

Figure 2.3: A collection water columns whose salinity, and therefore density, has a gradient from
left to right. The water in column A is least dense. Under constant gravity, the height of column
A must be greater than B so that the mass of column A equals that of column B.
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Figure 2.4: The force field created by two point masses.

column of water at B. Therefore, a mean sea level station at A would not be at the same distance
from the Earth’s center of gravity as a mean sea level station at B.

As another example showing why gravitational force is not an acceptable way to define level
surfaces, Figure 2.4 shows the force field generated by two point-unit masses located at (0,1) and
(0,-1). Note the lines of symmetry along the x and y axes. All forces for places on the x-axis are
parallel to the axis and directed towards (0,0). Above or below the x-axis, all force lines ultimately
lead to the mass also located on that side. Figure 2.5 shows a plot of the magnitude of the vectors
of Figure 2.4. Note the local maxima around x = ±1 and the local minima at the origin. Figure 2.6
is a plot of the “north-east” corner of the force vectors superimposed on top of an isoforce plot of
their magnitudes (i.e., a “contour plot” of Figure 2.5). Note that the vectors are not perpendicular
to the isolines. If one were to place a drop of water anywhere in the space illustrated by the figure,
the water would follow the vectors to the peak and would both follow and cross isoforce lines, which
is nonsensical if we take isoforce lines to correspond to level surfaces. This confirms that equiforce
surfaces are not level.

These three examples explain why gravitational acceleration does not lead to a suitable vertical
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Figure 2.5: The magnitude of the force field created by two point masses.
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Figure 2.6: The force field vectors shown with the isoforce lines of the field. Note that the vectors
are not perpendicular to the isolines thus illustrating that equiforce surfaces are not level.
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datum, but they also provide a hint where to look. We require that water not flow between two
points of equal height. We know from the first example that level surfaces have gravity force
vectors that are normal to them. The second example illustrated that the key to finding a level
surface pertains to energy rather than force, because the level surface in Figure 2.3 was created by
equalizing the weight of the water columns. This is related to potential energy, which we will now
discuss.

2.4 Work and Gravitational Potential Energy

Work plays a direct role in the definition of the geoid because it causes a change in the potential
energy state of an object. In particular, when work is applied against the force of gravity causing
an object to move against the force of gravity, that object’s potential energy is increased, and this
is an important concept in understanding the geoid. Therefore, we now consider the physics of
work.

Work is what happens when a force is applied to an object causing it to move. It is a scalar
quantity with units of distance squared times mass per second squared, and it is called the “joule,”
abbreviated J, in the mks system. Work is computed as force multiplied by distance, but only the
force that is applied in the direction of motion contributes to the work done on the object.

Suppose we move an object in a straight line. If we denote a constant force by F and the
displacement of the object by a vector s, then the work done on the object is W = F · s (2.1). This
same expression would be correct even if F is not directed exactly along the path of motion, because
the inner product extracts from F only that portion that is directed parallel to s. Of course, in
general, force can vary with position, and the path of motion might not be a straight line. Let C
denote a curve that has been parameterized by arc length s, meaning that p = C(s) is a point on
C that is s units from C’s starting point. Let t̂(s) denote a unit vector tangent to C at s. Since we
want to allow force to vary along C, we adopt a notion that the force is a function of position F(s).
Then, by application of the calculus, the work expended by the application of a possibly varying
force along a possibly curving path C from s = s0 to s = s1 is:

W =
∫ s1

s0

F(s) · t̂(s)ds. (2.5)

Equation 2.5 is general so we will use it as we turn our attention to motion within a gravitational
force field. Suppose we were to move some object in the presence of a gravitational force field.
What would be the effect? Let us first suppose that we move the object on a level surface, which
implies that the direction of the gravitational force vector is everywhere normal to that surface
and, thus, perpendicular to t̂(s), as well. Since by assumption Fg is perpendicular to t̂(s), Fg plays
no part in the work being done because Fg(s) · t̂(s) = 0. Therefore, moving an object over a level
surface in a gravity field is identical to moving it in the absence of the field altogether, as far as
the work done against gravity is concerned.

Now, suppose that we move the object along a path such that the gravitational force is not
everywhere normal to the direction of motion. From Equation 2.5 it is evident that either more or
less work will be needed due to the force of gravity, depending on whether the motion is against
or with gravity, respectively. The gravity force will simply be accounted for by adding it to force
we apply; the object can make no distinction between them. Indeed, we can use superposition
to separate the work done in the same direction as gravity from the work done to move laterally
through the gravity field; they are orthogonal. We now state, without proof, a critical result from
vector calculus: the work done by gravity on a moving body does not depend on the path of motion,
apart from the starting and ending points. This is a consequence of gravity being a conservative
field (Blakely 1995, Schey 1992). As a result, the work integral along the curve defining the path
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of motion can be simplified to consider work only in the direction of gravity. This path is called a
plumb line and, over short distances, can be considered to be a straight line, although the force
field lines shown in Figure 2.6 show that plumb lines are not straight, in general. Therefore, from
Equation 2.5, the work needed to, say, move some object vertically through a gravity field is given
by:

W =
∫ h1

h0

Fg(h) · t̂(h)dh, (2.6)

where
h = height (distance along the plumbline); and
t̂(h) = the direction of gravity.
However, Fg(h) is always parallel to t̂(h), so Fg(h) · t̂(h) = ±Fg(h), depending on whether the
motion is with or against gravity. If we assume Fg(h) is constant, Equation 2.6 can be simplified
as:

W =
∫ h1

h0

Fg(h) · t̂(h)dh, (Eq.2.6)

=
∫ h1

h0

mEg(h) · t̂(h)dh, (Eq.2.3)

= mEg(h)
∫ h1

h0

dh, (assuming Eg is constant)

= mgΔh, (2.7)

where we denote the assumed constant magnitude of gravitational acceleration at the Earth’s
surface by g, as is customary. The quantity mgh is called potential energy, so Equation 2.7
indicates that the release of potential energy will do work if the object moves along gravity force
lines. The linear dependence of Equation 2.7 on height (h) is a key concept.

2.5 The Geoid

2.5.1 What is the Geoid?

Although Equation 2.7 indicates a fundamental relationship between work and potential energy, we
do not use this relationship directly because it is not convenient to measure work to find potential.
Therefore, we rely on a direct relationship between the Earth’s potential field and its gravity field
that we state without justification:

Eg = �U, (2.8)

where
U = the Earth’s potential field; and
� = the gradient operator. 3 Written out in Cartesian coordinates, Equation 2.8 becomes:

Eg =
∂U

∂x
ı̂ +

∂U

∂y
ĵ +

∂U

∂z
k̂

where ı̂, ĵ, k̂ are unit vectors in the x, y, and z directions, respectively. In spherical coordinates,
Equation (II.8) becomes:

Eg =
∂U

∂r
r̂. (2.9)

3Other authors write Equation 2.8 as Eg = −�U , but the choice of the negative sign is essentially one of perspec-
tive: if the negative sign is included, the equation describes work done to overcome gravity. We prefer the opposite
perspective because Equation 2.8 follows directly from Equation 2.3, in which the negative sign is necessary to capture
the attractive nature of gravitational force.
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Figure 2.7: The force experienced by a bubble due to water pressure. Horizontal lines indicate
surfaces of constant pressure, with sample values indicated on the side.

Equation 2.8 means that the gravity field is the gradient of the potential field. For full details, the
reader is referred to the standard literature, including (Blakely 1995, Heiskanen & Moritz 1967,
Ramsey 1981, Torge 1997, Vańıček & Krakiwsky 1986). Although Equation 2.8 can be proven
easily (Heiskanen & Moritz 1967, p.2), the intuition behind the equation does not seem to be so
easy to grasp.

We will attempt to clarify the situation by asking the reader to consider the following, odd,
question: why do air bubbles go upwards towards the surface of the water? The answer that is
usually given is because air is lighter than water. This is surely so but F = ma, so if bubbles
are moving, then there must be a force involved. Consider Figure 2.7, which shows a bubble,
represented by a circle, which is immersed in a water column. The horizontal lines indicate water
pressure. The pressure exerted by a column of water increases nearly linearly with depth (because
water is nearly incompressible). The water exerts a force inwards on the bubble from all directions,
which are depicted by the force vectors. If the forces were balanced, no motion would occur. It
would be like a rope in a tug-of-war in which both teams are equally matched. Both teams are
pulling the rope but the rope is not moving: equal and opposite forces cause no motion.

However, the bubble has some finite height: the depth of the top of the bubble is less than the
depth of the bottom of the bubble. Therefore, the pressure at the top of the bubble is less than the
pressure at the bottom, so the force on the top of the bubble is less than that at the bottom. This
pressure gradient creates an excess of force from below that drives the bubble upwards. Carrying
the thought further, the difference in magnitude between any two lines of pressure is the gradient
of the force field; it is the potential energy of the force field. The situation with gravity is exactly
analogous to the situation with water pressure. Any surface below the water at which the pressure
is constant might be called an “equipressure” surface. Any surface in or around the Earth upon
which the gravity potential is constant is called an equipotential surface. Thus, a gravity field is
caused by the difference in the gravity potential of two infinitely close gravity equipotential surfaces.

By assuming a spherical, homogeneous, non-rotating Earth, we can derive its potential field
from Equation 2.9 and by denoting |r| by r:

∂U

∂r
r̂ = Eg∫

dU = −
∫

GM

r2
dr

U =
GM

r
+ c. (2.10)

The constant of integration in Equation 2.10 can be chosen so that zero potential resides either
infinity far away or at the center of M . We choose the former convention. Consequently, potential
increases in the direction that gravity force vectors point and the absolute potential of an object
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Figure 2.8: The gravity force vectors created by a unit mass and the corresponding isopotential
field lines. Note that the vectors are perpendicular to the field lines. Thus, the field lines extended
into three dimensions constitute level surfaces.

of mass m located a distance h from M is:

U = −
∫ h

∞
GMm

r2
dr

=
GMm

r

∣∣∣h
∞

=
GMm

h
− GMm

∞
=

GMm

h
. (2.11)

We now reconsider the definition of the geoid, being the equipotential surface of the Earth’s gravity
field that nominally defines mean sea level. From Equation 2.10, the geoid is some particular value
of U and, furthermore, if the Earth were spherical, homogeneous, and not spinning, the geoid
would also be located at some constant distance from the Earth’s center of gravity. However, none
of these assumptions are correct, so the geoid occurs at various distances from the Earth’s center -
it undulates.

One can prove mathematically that Eg is perpendicular to U . To illustrate this, see Figure 2.8.
The figure shows the force vectors as seen in Figure 2.6 but superimposed over the potential field
computed using Equation 2.10 instead of the magnitude of the force field. Notice that the vectors
are perpendicular to the isopotential lines. Water would not flow along the isopotential lines; only
across them. In three dimensions, the isopotential lines would be equipotential surfaces, such as
the geoid.

2.5.2 The Shape of the Geoid

We now consider the shape of the geoid as it occurs for the real Earth. It is evident from Equa-
tion 2.10 that the equipotential surfaces of a spherical, homogeneous, non-rotating mass would be
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Figure 2.9: The gravity force vectors and isopotential lines created at the Earth’s surface by a point
with mass roughly equal to that of Mt. Everest. The single heavy line is a plumb line.

concentric, spherical shells-much like layers of an onion. If the sphere is very large, such as the
size of the Earth, and we examined a relatively small region near the surface of the sphere, the
equipotential surfaces would almost be parallel planes.

Now, suppose we add some mass to the sphere in the form of a point mass roughly equal to
that of Mt. Everest positioned on the surface of the sphere. The resulting gravity force field and
isopotential lines are shown in Figure 2.9. The angles and magnitudes are exaggerated for clarity;
the deflection of the vertical is very apparent. In particular, we draw attention to the shape of the
isopotential lines which run more-or-less horizontally across the figure. Notice how they bulge up
over the mountain. This is true in general: the equipotential surfaces roughly follow the topographic
shape of the Earth in that they bow up over mountains and dip down into valleys. Also, any one
of the geopotential lines shown in Figure 2.9 can be thought of as representing the surface of the
ocean above an underwater seamount. Water piles up over the top of subsurface topography to
exactly the degree that the mass of the additional water exactly balances the excess of gravity
caused by the seamount. Thus, one can indirectly observe seafloor topography by measuring the
departure of the ocean’s surface from nominal gravity (Hall 1992). The geoid, of course, surrounds
the Earth, and Figure 1.2 on page 7 shows the ellipsoid height of the geoid with respect to NAD
83 over the conterminous United States as modeled by GEOID03 (Roman et al. 2004). At first
glance, one could mistake the image for a topographic map. However, closer examination reveals
numerous differences.

2.6 Geopotential Numbers

The geoid is usually considered the proper surface from which to reckon geodetic heights because it
honors the flow of water and nominally resides at mean sea level. Sea level, itself, does not exactly
match the geoid because of the various physical factors mentioned before. Therefore, actually
finding the geoid in order to realize a usable vertical datum is currently not possible from mean
sea level measurements. Ideally, one would measure potential directly in some fashion analogous
to measuring gravity acceleration directly. If this were possible, the resulting number would be
a geopotential number. In other words, a geopotential number is the potential of the Earth’s
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gravity field at any point in space. Using geopotential numbers as heights is appealing for several
reasons:

• Geopotential defines hydraulic head. Therefore, if two points are at the same geopotential
number, water will not flow between them due to gravity alone. Conversely, if two points are
not at the same geopotential number, gravity will cause the water to flow between them if
the waterway is unobstructed (ignoring friction).

• Geopotential decreases linearly with distance from the center of the Earth (Equation (II.10)).
This makes it a natural measure of distance.

• Geopotential does not depend on the path taken from the Earth’s center to the point of
interest. This makes a geopotential number stable.

• The magnitude of a geopotential number is less important than the relative values between
two places. Therefore, one can scale geopotential numbers to any desirable values, such as
defining the geoid to have a geopotential number of zero.

Equation 2.11 gives hope of determining height by measuring a gravity-related quantity, namely,
absolute potential. Regrettably, potential cannot be measured directly. This is understandable
because the manifestation of potential (the force of gravity) is created by potential differences, not
in the potential itself. That is, two pairs of potential energies, say (150, 140) and (1000, 990) result
in a force of the same magnitude. This is true because the difference of the two pairs is the same,
namely, 10 newtons. In light of this, one might ask how images of the geoid, such as Figure 1.2 on
page 7, came into being. The image in Figure 1.2 is the result of a sophisticated mathematical
model based on Stokes’ formula, which we take from Heiskanen & Moritz (1967, p.94) equation
2-163b, and present here for completeness:

N =
R

4πG

∫
σ

Δg S(ψ)dσ, (2.12)

where
N = geoid height at a point of interest;
R = mean radius of the Earth;
G = the universal gravitational constant;
Δg = the reduced, observed gravity measurements around the Earth;
ψ = the spherical distance from each surface element dσ to the point of interest, and S(ψ), which
is known as Stokes’ function, given by Heiskanen & Moritz (1967, p.94), equation 2-164:

S(ψ) =
1

sin(ψ/2)
− 6 sin(ψ/2) + 1 − 5 cos ψ − 3 cos ψ ln(sin(ψ/2) + sin2(ψ/2))

The model is calibrated with, and has boundary conditions provided by, reduced gravity mea-
surements taken in the field-the Δg’s in Equation 2.12. These measurements together with Stokes’
formula permit the deduction of the potential field that must have given rise to the observed gravity
measurements.

In summary, in spite of their natural suitability, geopotential numbers are not practical to use as
heights because practicing surveyors cannot easily measure them in the field.4 They are, however,
the essence of what the word height really means, and subsequent papers in this series will come to
grips with how orthometric and ellipsoid heights are related to geopotential numbers by introducing
Helmert orthometric heights and dynamic heights.

4Geopotential numbers have units of energy, not length. We suspect that most practicing surveyors would object
to using heights that don’t have length units, as well.
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2.7 Summary

This second paper in a four-part series that reviews the fundamental concept of height presented
simple derivations of the physics concepts needed to understand the force of gravity, since mean
sea level and the Earth’s gravity field are strongly interrelated. It was shown that one cannot
use the magnitude of the force of gravity to define a vertical datum because equiforce surfaces are
not level surfaces. However, it was observed that gravity potential gives rise to gravity force and,
furthermore, gravity force is normal to equipotential surfaces. The practical consequence of this is
that water will not flow along an equipotential surface due to the force of gravity alone. Therefore,
equipotential surfaces are level surfaces and suitable to define a vertical datum. In particular,
although there is an infinite number of equipotential surfaces, the geoid is often chosen to be the
equipotential surface of the Earth’s gravity field that best fits mean sea level in a least squares
sense, and the geoid has thus become the fundamental vertical datum for mapping. It was shown
that mean sea level itself is not a level surface, therefore, one cannot deduce the location of the
geoid by measuring the location of mean sea level alone. Furthermore, one cannot measure gravity
potential directly. Therefore, we model the geoid mathematically, based on gravity observations.

A geopotential number was defined to be a number proportional to the gravity potential at that
place. Geopotential numbers capture the notion of height exactly because they vary linearly with
vertical distance and define level surfaces. However, they are usually unsuitable for use as distances
themselves because they cannot be measured directly and have units of energy rather than length.



Chapter 3

Height Systems

3.1 Preamble

This monograph was originally published as a series of four articles appearing in the Surveying and
Land Information Science. Each chapter corresponds to one of the original papers. This paper
should be cited as

Meyer, Thomas H., Roman, Daniel R., and Zilkoski, David B. (2005) What does height really
mean? Part III: Height Systems. In Surveying and Land Information Science, 66(2): 149-160.

This is the third paper in a four-part series considering the fundamental question, “what does
the word height really mean?” The first paper reviewed reference ellipsoids and mean sea level
datums. The second paper reviewed the physics of heights culminating in a simple development of
the geoid and explained why mean sea level stations are not all at the same orthometric height.
This third paper develops the principle notions of height, namely measured differentially-deduced
changes in elevation, orthometric heights, Helmert orthometric heights, normal orthometric heights,
dynamic heights, and geopotential numbers. We conclude with a more in-depth discussion of current
thoughts regarding the geoid.

3.2 Introduction

There are two general visions of what the word height means: a geometric separation versus hy-
draulic head. For Earth mensuration, these visions are not the same thing and this discrepancy
has lead to many formulations of different types of heights. In broad strokes there are orthometric
heights, purely geometric heights and heights that are neither. None of these are inferior to the
others in all respects. They all have strengths and weaknesses, so to speak, and this has given
rise to a number of competing height systems. We begin by introducing these types of heights,
then examine the height systems in which they are measured and conclude with some remarks
concerning the geoid.

3.3 Heights

3.3.1 Uncorrected Differential Leveling

Leveling is a process by which the geometric height difference along the vertical is transferred from
a reference station to a forward station. Suppose a leveling line connects two stations A and B as
depicted in Figure III.1 (c.f. Heiskanen & Moritz (1967, p. 161)). If the two stations are far enough
apart, the leveling section will contain several turning points, the vertical geometric separation

29
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geoid
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Figure 3.1: A comparison of differential leveling height differences δvi with orthometric height
differences δHB,i. The height determined by leveling is the sum of the δvi whereas the orthometric
height is the sum of the δHB,i. These two are not the same due to the non-parallelism of the
equipotential surfaces whose geopotential numbers are denoted by C.

between which we denote as δvi. Any two turning points are at two particular geopotential numbers,
the difference of which is the potential gravity energy available to move water between them;
hydraulic head. We also consider the vertical geometric separation of those two equipotential
surfaces along the plumb line for B, δHB,i. We will now argue that differential leveling does not, in
general, produce orthometric heights. The figure depicts two stations A and B, indicated by open
circles, with geopotential numbers CA and CB, and at orthometric heights HA and HB, respectively.
The geopotential surfaces, shown in cross section as lines, are not parallel; they converge toward
the right. Therefore, it follows that δvi �= δHB,i. The height difference from A to B as determined
by uncorrected differential leveling is the sum of the δvi. Therefore, because δvi �= δHB,i and the
orthometric height at B can be written as HB =

∑
i δHB,i, it follows that

∑
i δvi �= HB. We now

formalize the difference between differential leveling and orthometric heights so as to clarify the
role of gravity in heighting. In the bubble “gedanken experiment” in the second paper of this series
(Meyer, Roman & Zilkoski 2005b, pp. 11,12), we argued that the force moving the bubble was the
result of a change in water pressure over a finite change in depth. By analogy we claimed that
gravity force is the result of a change in gravity potential over a finite separation

g = −δW/δH (3.1)

where g is gravity force, W is geopotential and H is orthometric height. Simple calculus allows
rearranging to give −δW = gδH. Recall that δvi and δHB,i are, by construction, across the same
potential difference so −δW = gδvi = g′δHB,i, where g′ is gravity force at the plumb line. Now,
δvi �= δHB,i due to the non-parallelism of the equipotential surfaces but δW is the same for both,
so gravity must be different on the surface where the leveling took place than at the plumb line.
This leads us to Heiskanen & Moritz (1967, p.161, Eq. 4-2)

δHB,i =
g

g′
δvi �= δvi (3.2)

which indicates that differential leveling height differences differ from orthometric height
differences by the amount that surface gravity differs from gravity along the plumb
line at that geopotential. An immediate consequence of this is that two different leveling lines
starting and ending at the same station will, in general, provide different values for the height of
final station. This is because the two lines will run through different topography and, consequently,
geopotential surfaces with disparate separations. Uncorrected differential leveling heights
are not single-valued, meaning the result you get depends on the route you took to get there.

In summary, heights derived from uncorrected differential leveling
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• are readily observed by differential leveling,

• are not single-valued by failing to account for the variability in gravity,

• will not, in theory, produce closed leveling circuits, and

• do not define equipotential surfaces. Indeed, they do not define surfaces in the mathematical
sense at all.

3.3.2 Orthometric Heights

According to Heiskanen & Moritz (1967, p.172), “Orthometric heights are the natural ‘heights above
sea level,’ that is, heights above the geoid. They thus have an unequalled geometrical and physical
significance.” National Geodetic Survey (1986) defines orthometric height (ibid.) as, “The
distance between the geoid and a point measured along the plumb line and taken positive upward
from the geoid,” with plumb line defined (ibid.) as, “A line perpendicular to all equipotential
surfaces of the Earth’s gravity field that intersect with it.” In one sense, orthometric heights are
purely geometric: they are the length of a particular curve (a plumb line). However, that curve
depends on gravity in two ways. First, the curve begins at the geoid. Second, plumb lines remain
everywhere perpendicular to equipotential surfaces through which they pass so the shape of the
curve is determined by the orientation of the equipotential surfaces. Therefore, orthometric heights
are closely related to gravity in addition to being a geometric quantity.

How are orthometric heights related to geopotential? Eq. 3.1 gives that g = −δW/δH. Taking
differentials instead of finite differences and rearranging leads to dW = −gdH. Recall that geopo-
tential numbers are the difference in potential between the geoid W0 and a point of interest A,
WA : CA = W0 − WA, so

∫ WA

W0

dW = −
∫ HA

0
g dH

WA − W0 = −
∫ HA

0
g dH

W0 − WA =
∫ HA

0
g dH

CA =
∫ HA

0
g dH (3.3)

in which it is understood that g is not a constant. Eq. 3.3 can be used to derive the desired
relationship

CA = ḡ HA (3.4)

meaning that a geopotential number is equal to an orthometric height multiplied by the average
acceleration of gravity along the plumb line. It was argued in the second paper that geopotential
is single-valued, meaning the potential of any particular place is independent of the path taken to
arrive there. Consequently, orthometric heights are likewise single-valued, being a scaled value of
a geopotential number.

If orthometric heights are single-valued, it is logical to inquire whether surfaces of constant
orthometric height form equipotential surfaces. The answer to this is, unfortunately, no. Consider
the geopotential numbers of two different places with the same orthometric height. If orthometric
heights formed equipotential surfaces then two places at the same orthometric height must be at the
same potential. Under this hypothesis Eq. 3.4 requires that the average gravity along the plumb
lines of these different places necessarily be equal. However, the acceleration of gravity depends
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on height, latitude, and the distribution of masses near enough to be of concern; it is constant
in neither magnitude nor direction. There is no reason that the average gravity would be equal
and, in fact, it typically is not. Therefore, two points of equal orthometric height need not
have the same gravity potential energy, meaning that they need not be on the same
equipotential surface and, therefore, not at the same height from the perspective of
geopotential numbers. Consider Figure III.2 a-d.

The figure, which is essentially a three-dimensional rendering of Figs. 2.9 and 3.1, shows an
imaginary mountain together with various equipotential surfaces. Panel (b) shows the mountain
with just one gravity equipotential surface. Everywhere on a gravity equipotential surface is at the
same gravity potential, so water would not flow along the intersection of the equipotential surface
with the topography without external influence. Nevertheless, the curve defined by the intersection
of the gravity equipotential surface with the topography would not be drawn as a contour line on
a topographic map because a contour line is defined to be, “An imaginary line on the ground, all
points of which are at the same elevation above or below a specified reference surface” (National
Geodetic Survey 1986). This runs contrary to conventional wisdom that would define a contour
line as the intersection of a horizontal plane with the topography. In panels (c) and (d), one
can see that the equipotential surfaces undulate. In particular, notice that the surfaces do not
remain everywhere the same distance apart from each other and that they “pull up” through the
mountains. Panel (d) shows multiple surfaces, each having less curvature than the one below it as
a consequence of increasing distance from the Earth.

Now consider Figure 3.3, which is an enlargement of the foothill in the right side of panel 3.2(c).
Suppose that the equipotential surface containing A and D is the geoid. Then the orthometric
height of station B is the distance along its plumb line to the surface containing A and D; the same
for station C. Although neither B nor C’s plumb line is shown - both plumb lines are inside the
mountain - one can see that the separation from B to the geoid is different than the separation
from C to the geoid even though B and C are on the same equipotential surface. Therefore, they
have the same geopotential number but have different orthometric heights. This illustrates why
orthometric heights are single-valued but do not create equipotential surfaces.

How are orthometric heights measured? Suppose an observed sequence of geometric height
differences δvi has been summed together for the total change in geometric height along a section
from station A to B, ΔvAB =

∑
i δvi. Denote the change in orthometric height from A to B as

ΔHAB. Eq. 3.4 requires knowing a geopotential number and the average acceleration of gravity
along the plumb line but neither of these are measurable. Fortunately, there is a relationship
between leveling differences Δv and orthometric height differences ΔH: a change in orthometric
height equals a change in geometric height plus a correction factor known as the orthometric
correction (for a derivation see Heiskanen & Moritz (1967, pp.167-168, Eqs. 4-31 and 4-33)

ΔHAB = ΔvAB + OCAB (3.5)

where OCAB is the orthometric correction and has the form

OCAB =
B∑
A

gi − γ0

γ0
δvi +

ḡA − γ0

γ0
HA − ḡB − γ0

γ0
HB (3.6)

where gi is the observed force of gravity at the observation stations, ḡA, ḡB are the average values
of gravity along the plumb lines at A and B, respectively, and γ0 is an arbitrary constant, which is
often taken to be the value of normal gravity at 45◦ latitude. Although Eq. 3.6 stipulates gravity be
observed at every measuring station, Bomford (1980, p.206) suggested that the observation stations
need to be no closer than two to three km in level country but should be as close as 0.3 km in
mountainous country. Others recommended observation station separations be 15 to 25 km in level
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Figure 3.2: Four views of several geopotential surfaces around and through an imaginary mountain.
(a) The mountain without any equipotential surfaces. (b) The mountain shown with just one
equipotential surface for visual simplicity. The intersection of the surface and the ground is a line
of constant gravity potential but not a contour line. (c) The mountain shown with two equipotential
surfaces. Note that the surfaces are not parallel and that they undulate through the terrain. (d)
The mountain shown with many equipotential surfaces. The further the surface is away from
the Earth, the less curvature it has. (Image credit: Ivan Ortega, Office of Communication and
Information Technology, UConn College of Agriculture and Natural Resources)
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Figure 3.3: B and C are on the same equipotential surface but are at difference distances from the
geoid at A-D. Therefore, they have different orthometric heights. Nonetheless, a closed leveling
circuit with orthometric corrections around these points would theoretically close exactly on the
starting height, although leveling alone would not.

country and 5 km in mountainous country (Strang van Hees 1992, Kao, Hsu & Ning 2000, Hwang &
Hsiao 2003). There is a fair amount of literature on practical applications of orthometric corrections
of which the following is a small sample: (Forsberg 1984, Strang van Hees 1992, Kao et al. 2000,
Allister & Featherstone 2001, Hwang 2002, Brunner 2002, Hwang & Hsiao 2003, Tenzer, Vańıček,
Santos, Featherstone & Kuhn 2005). The work described in these reports was undertaken by
institutions with the resources to field gravimeters with their necessary surveying crews. Although
there has been progress made in developing portable gravimeters (Faller & Vitouchkine 2003), it
remains impractical to make the required gravity measurements called for by Eq. 3.6 for most
surveyors. For first-order leveling, National Geodetic Survey (NGS) has used corrections that
depend solely on the geodetic latitude and normal gravity at the observation stations thus avoiding
the need to measure gravity (Survey 1981, pp. 5-26) although, if leveling is used to determine
geopotential numbers such as in the NAVD 88 adjustment, orthometric corrections aren’t used.
NGS data sheets include modeled gravity at benchmarks, which provide a better estimate of gravity
than normal gravity and are suitable for orthometric correction.

Although exact knowledge of ḡ is not possible at this time, its value can be estimated either using
a free-air correction (Heiskanen & Moritz 1967, pp. 163-164), or by the reduction of Poincaré
and Prey (ibid., p 165). The former depends on knowledge of normal gravity only by making
assumptions regarding the mean curvature of the potential field outside of the Earth. Orthometric
heights that depend upon this strategy are called Helmert orthometric heights. NGS publishes
NAVD 88 Helmert orthometric heights. The Poincar and Prey reduction, which requires a remove-
reduce-restore operation, is more complicated and only improves the estimate slightly (ibid., pp.
163-165).

In summary, orthometric heights

• constitute the embodiment of the concept of “height above sea level”
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• are single-valued by virtue of their relationship with geopotential numbers and, consequently,
will produce closed leveling circuits, in theory,

• do not define equipotential surfaces due to the variable nature of the force of gravity. This
could, in principle, lead to the infamous situation of water apparently “flowing uphill.” Al-
though possible, this situation would require a steep gravity gradient in a location with
relatively little topographic relief. This can occur in places where subterranean features sub-
stantially affect the local gravity field but have no expression on the Earth’s surface, and

• are not directly measurable from their definition. Orthometric heights can be determined
by observing differential leveling-derived geometric height differences to which are applied a
small correction, the orthometric correction. The orthometric correction requires surface
gravity observations and an approximation of the average acceleration of gravity along the
plumb line.

3.3.3 Ellipsoid Heights and Geoid Heights

Ellipsoid heights are the straight line distances normal to a reference ellipsoid produced away from
(or into) the ellipsoid to the point of interest. Before GPS it was practically impossible for anyone
outside the geodesy community to determine an ellipsoid height. Now, GPS receivers produce three-
dimensional baselines (Meyer 2002) resulting in determinations of geodetic latitude, longitude and
ellipsoid height. Therefore, today, ellipsoid heights are commonplace.

Ellipsoid heights are almost never suitable surrogates for orthometric heights because equipo-
tential ellipsoids (Meyer, Roman & Zilkoski 2005a, pp. 226,227) are not, in general, suitable
surrogates for the geoid (although see Kumar (2005)). Consider that nowhere in the conterminous
United States is the geoid closer to a GRS 80-shaped ellipsoid centered at the ITRF origin than
about two meters. Confusing an ellipsoid height with an orthometric height could not result in
a blunder less than two meters but would typically be far worse, even disastrous. For example,
reporting the height of an obstruction in the approach to an airport runway at New York City
using ellipsoid heights instead of orthometric heights would apparently lower the reported height
by around 30 m with a possible result of causing a pilot to mistakenly believe the aircraft had 30
m more clearance than what is real.

Ellipsoid heights have no relationship to gravity, they are purely geometric. It is remarkable,
then, that ellipsoid heights have a simple (approximate) relationship to orthometric heights, namely

H ≈ h − N (3.7)

where H is orthometric height, h is ellipsoid height and N is the ellipsoid height of the geoid
itself, a geoid height or geoid undulation. This relationship is not exact because it ignores the
deflection of the vertical. Nevertheless, it is close enough for most practical purposes. According
to Eq. 3.7, ellipsoid heights can be used to determine orthometric heights if the geoid height is
known. As discussed in the previous paper, geoid models are used to estimate N thus enabling
the possibility of determining orthometric heights with GPS (Meyer et al. 2005b, p.12). We will
explore these relationships in some detail in the last paper in the series on GPS heighting.

In summary, ellipsoid heights

• are single-valued (because a normal gravity potential field satisfies Laplace’s equation and is,
therefore, convex),

• do not use the geoid or any other physical gravity equipotential surface as their datum,

• do not define equipotential surfaces, and
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• are readily determined using GPS.

3.3.4 Geopotential Numbers and Dynamic Heights

Geopotential numbers C are defined from Eq. 2.6, (c.f. (Heiskanen & Moritz 1967, p.162, Eq.
4-8)) which gives the change in gravity potential energy between a point on the geoid and another
point of interest. The geopotential number for any place is the potential of the geoid W0 minus
the potential of that place W (recall the potential decreases with distance away from the Earth so
this difference is a positive number). Geopotential numbers are given in geopotential units (g.p.u.),
where 1 g.p.u. = 1 kgal-meter = 1000 gal meter (Heiskanen & Moritz 1967, p.162, Eq. 4-8). If
gravity is assumed to be a constant 0.98 kgal, a geopotential number is approximately equal to 0.98
H, so geopotential numbers in g.p.u. are nearly equal to orthometric heights in meters. However,
geopotential numbers have units of energy, not length, and are therefore an “unnatural” measure
of height.

It is possible to scale geopotential numbers by dividing by a gravity value, which will change
their units from kgal-meter to meter. Doing so results in a dynamic height:

Hdyn = C/γ0 (3.8)

One reasonable choice for γ0 is the value of normal gravity (Eq. 1.2) at some latitude, con-
ventionally taken to be 45 degrees. Obviously, scaling geopotential numbers by a constant does
not change their fundamental properties so dynamic heights, like geopotential numbers, are single-
valued, produce equipotential surfaces and form closed leveling circuits. They are not, however,
geometric like an orthometric height: two different places on the same equipotential surface have
the same dynamic height but generally do not have the same orthometric height. Thus, dynamics
heights are not “distances from the geoid.”

Measuring dynamic heights is accomplished in a manner similar to that for orthometric heights:
geometric height differences observed by differential leveling are added to a correction term that
accounts for gravity,

ΔHdyn
AB = ΔvAB + DCAB (3.9)

where ΔvAB is the total measured geometric height difference derived by differential leveling and
DCAB is the dynamic correction. The dynamic correction from station A to B is given by Heiskanen
& Moritz (1967, p.163, Eq. 4-11) as

DCAB =
B∑
A

gi − γ0

γ0
δvi (3.10)

where gi is the (variable) force of gravity at each leveling observation station, γ0 = γ0(45◦), and the
δvi are the observed changes in geometric height along each section of the leveling line. However,
DC typically takes a large value for inland leveling conducted far from the defining latitude. For
example, suppose a surveyor in Albuquerque, New Mexico (at a latitude of around 35 N), begins a
level line at the Route 66 bridge over the downtown railroad tracks at an elevation of, say, 1510 m
and runs levels to the Four Hills subdivision at an elevation of, say, 1720 m, a change in elevation
of 210 m. From Eq. 3.10, DC = Δv(g − γ0)/γ0. So taking γ0 = γ45◦ = 980.62 gal and γ35◦ =
979.734 gal, then DC = 210 m (979.734 gal - 980.62 gal)/980.62 gal = -0.189775 m, a correction
of roughly two parts in one thousand. This is a huge correction compared to any other correction
applied in first-order leveling with no obvious physical interpretation such as the refraction caused
by the atmosphere. It’s unlikely that surveyors would embrace a height system that imposed such
large corrections that would often affect even lower accuracy work. Nonetheless, dynamics heights
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are of practical use wherever water levels are needed, such as the Great Lakes and also along ocean
shores even if they are used far from the latitude of the normal gravity constant. The geoid is
thought to be not more than a couple meters from the ocean surface and, therefore, shores will
have geopotential near to that of the geoid. Consequently, shores have dynamic heights near to
zero regardless of their distance from the defining latitude. Even so, for inland surveying, DC can
have a large value, on the order of several meters at the equator.

The dynamics heights in the International Great Lakes Datum of 1985 are established by the
“Vertical Control - Water Levels” Subcommittee under the Coordinating Committee on Great
Lakes Basic Hydraulics and Hydrology Data (CCGLBHHD). In summary, dynamic heights

• are a scaling of geopotential numbers by a constant to endow them with units of length,

• are not geometric distances,

• are single-valued by virtue of their relationship with geopotential numbers and, consequently,
will produce closed-circuits, in theory,

• define equipotential surfaces, and

• are not measurable directly from their definition. Dynamic heights can be determined by
observing differential leveling-derived geometric height differences to which are applied a
correction, the dynamic correction. The dynamic correction requires surface gravity ob-
servations and can be on the order of meters in places far from the latitude at which γ0 was
defined.

3.3.5 Normal Heights

Of heights defined by geopotential (orthometric and dynamic) Heiskanen & Moritz (1967, p.287)
write,

The advantage of this approach is that the geoid is a level surface, capable of simple
definition in terms of the physically meaningful and geodetically important potential
W. The geoid represents the most obvious mathematical formulation of a horizontal
surface at mean sea level. This is why the use of the geoid simplifies geodetic problems
and makes them accessible to geometrical intuition.

The disadvantage is that the potential W inside the earth, and hence the geoid W =
const., depends on [a detailed knowledge of the density of the earth]Therefore, in order
to determine or to use the geoid, the density of the masses at every point between the
geoid and the ground must be known, at least theoretically. This is clearly impossible,
and therefore some assumptions concerning the density must be made, which is unsatis-
factory theoretically, even though the practical influence of these assumptions is usually
very small.

These issues lead Molodensky in 1945 to formulate a new type of height, a normal height, which
supposed that the Earth’s gravity field was normal, meaning the actual gravity potential equals
normal gravity potential (Molodensky 1945). The result of this postulate allowed that the “physical
surface of the earth can be determined from geodetic measurements alone, without using the density
of the earth’s crust” Heiskanen & Moritz (1967, p.288). This conceptualization of heights allowed
a fully rigorous method to be formulated for their determination, a method without assumptions.
The price, however, was that “This requires that the concept of the geoid be abandoned. The
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mathematical formulation becomes more abstract and more difficult” (ibid.). Normal heights are
defined by

C =
∫ H∗

0
γ dH∗ (3.11)

and
C = γ̄ H∗ (3.12)

where H∗ is normal height and γ is normal gravity. These formulae have identical forms to those
for orthometric height (c.f. Eqs. 3.3 and 3.4) but their meaning is completely different. First, the
zero used as the lower integral bound is not the geoid; it is a reference ellipsoid. Consequently,
normal heights depend upon the choice of reference ellipsoid and datum. Second, normal gravity is
an analytical function so its average may be computed in closed form; no gravity observations are
required. Third, from its definition one finds that a normal height H∗ is that ellipsoid height where
the normal gravity potential equals the actual geopotential of the point of interest. Regarding this,
Heiskanen & Moritz (1967, p.170) commented, “. . . but since the potential of the earth is evidently
not normal, what does all this mean?”

Like orthometric and dynamic heights, normal heights can be determined from geometrical
height differences observed by differential leveling and applying a correction. The correction term
has the same structure as that for orthometric correction, being

NCAB =
B∑
A

gi − γ0

γ0
δvi +

γ̄A − γ0

γ0
H∗

A − γ̄B − γ0

γ0
H∗

B (3.13)

with γ̄A and γ̄B being the average normal gravity at A and B, respectively, and other terms
defined as Eq. 3.6. Normal corrections also depend upon gravity observations gi but do not require
assumptions regarding average gravity within the Earth. Therefore, they are rigorous; all the
necessarily quantities can be calculated or directly observed. Like orthometric heights, they do
not form equipotential surfaces (because of normal gravity’s dependence on latitude; recall that
dynamic heights scale geopotential simply by a constant whereas orthometric and normal heights’
scale factors vary with location). Like orthometric heights, normal heights are single valued and
give rise to closed leveling circuits. Geometrically, they represent the distance from the ellipsoid
up to a surface known as the telluroid (see Heiskanen & Moritz (1967) for further discussion.)

In summary, normal heights

• are geometric distances, being ellipsoid heights, but not to the point of interest,

• are single-valued and, consequently, produce closed-circuits, in theory,

• do not define equipotential surfaces, and

• are not measurable directly from their definition. Normal heights can be determined by
observing differential leveling-derived geometric height differences to which are applied a cor-
rection, the normal correction. The normal correction requires surface gravity observations
only and, therefore, can be determined without approximations.

3.4 Height Systems

The term “height system” refers to a mechanism by which height values can be assigned to places
of interest. In consideration of what criteria a height system must satisfy, Hipkin (2002) suggested
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Table 3.1: A comparison of height systems with respect to various properties that distinguish them.

Single- Defines level No Small Physically Rigorous
valued surfaces misclosure correction meaningful implementation

Uncorrected no no no n/a yes yes
Dif. Leveling

Helmert yes no yes yes yes no
Orthometric

Ellipsoidal yes no yes n/a yes yes
Dynamic yes yes yes no yes yes
Normal yes no yes yes no yes

two necessary conditions:
(i.Hipkin) Height must be single-valued.
(ii.Hipkin) A surface of constant height must also be a level (equipotential) surface.

Heiskanen & Moritz (1967, p.173) held two different criteria, namely
(i.H&M) Misclosures be eliminated.
(ii.H&M) Corrections to the measured heights be as small as possible.

The first two criteria (i.Hipkin and i.H&M) are equivalent: if heights are single-valued, then leveling
circuits will be closed and vice versa. The second criteria form the basis of two different philosophies
about what is considered important for heights. Requiring that a surface of constant height be
equipotential requires that the heights be a scaled geopotential number and excludes orthometric
and normal heights. Conversely, requiring the measurement corrections to be as small as possible
precludes the former, at least from a global point of view, because dynamic height scale factors
are large far from the latitude of definition. No height meets all these criteria. This has given rise
to the use of (Helmert) orthometric heights in the United States, dynamic heights in Canada and
normal heights in Europe (Ihde & Augath 2000). Table 3.1 provides a comparison of these height
systems.

3.4.1 NAVD 88 and IGLD 85

Neither NAVD 88 nor IGLD 85 attempts to define the geoid or to realize some level surface which
was thought to be the geoid. Instead, they are based upon a level surface that exists near the
geoid but at some small, unknown distance from it. This level surface is situated such that shore
locations with a height of zero in this reference frame will generally be near the surface of the ocean.
IGLD 85 had a design goal that its heights be referenced to the water level gauge at the mouth of
the St. Lawrence River. NAVD 88 had a design goal that it minimize recompilation of the USGS
topographic map series, which was referred to NGVD 29. The station at Father Point/Rimouski
met both requirements. NAVD 88 was realized using Helmert orthometric heights whereas IGLD
85 employs dynamic heights. Quoting from IGLD85 (1995),

Two systems, orthometric and dynamic heights, are relevant to the establishment of
IGLD (1985) and NAVD (1988). The geopotential numbers for individual bench marks
are the same in both height systems. The requirement in the Great Lakes basin to
provide an accurate measurement of potential hydraulic head is the primary reason
for adopting dynamic heights. It should be noted that dynamic heights are basically
geopotential numbers scaled by a constant of 980.6199 gals, normal gravity at sea level
at 45 degrees latitude. Therefore, dynamic heights are also an estimate of the hydraulic
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head.

Also, “IGLD 85 and NAVD 88 are now one and the same. . . The only difference between IGLD 85
and NAVD 88 is that IGLD 85 benchmark values are given in dynamic height units, and NAVD
88 values are given in Helmert orthometric height units. The geopotential numbers of benchmarks
are the same in both systems”. The United States covers a large area north-to-south within which
is a considerable variety of topographic features. Therefore, dynamic heights would not be entirely
acceptable for the U.S. because the dynamic corrections in the interior of the country would often
be unacceptably large. The U.S. is committed now and for the future to orthometric heights, which
in turn implies a commitment to geoid determination.

3.5 Geoid Issues

The geoid is widely accepted as the proper datum for a vertical reference system, although this
perspective has challengers (Hipkin 2002). Conceptually, the geoid is the natural choice for a vertical
reference system and, until recently, its surrogate, mean sea level, was the object from which the
geoid was realized. However, no modern vertical reference system, in fact, uses the geoid as its
datum primarily because the geoid is difficult to realize (although Canada has recently proposed
re-defining their vertical datum using GPS and a geoid model). An exact, globally-satisfactory
definition of the geoid is not straightforward. Both of these issues will be explored in turn.

The reasons that the geoid is not realizable from a mean sea level surrogate were given in the
second paper in the discussion regarding why the mean sea surface is not a level surface. Quoting
Hipkin (2002, p.376), the “. . . nineteenth century approach to establishing a global vertical datum
supposed that mean sea level could bridge regions not connectable by leveling. The ’geoid’ was
formalized into the equipotential [surface] best fitting mean sea level and, for more than a century,
the concepts of mean sea level, the geoid, and the leveling datum were used synonymously.” We
now know this use of “geoid” for “mean sea level” and vice versa to be incorrect because the mean
sea surface is not an equipotential surface. Therefore, the mean sea surface is questionable as a
vertical datum. Furthermore, Hipkin argues that measuring changing sea levels is one of the most
important contributions that geodesy is making today. For this particular application, it does not
make sense to continually adjust the vertical datum to stay at mean sea level and, thus, eliminate
the phenomena trying to be observed. In contrast, chart makers, surveyors and mappers who define
flood planes and subsidence zones would probably require that the vertical datum reflect changes
in sea level to ensure their products are up-to-date and not misleading. Although a valid scientific
point, Hipkin’s argument does not override the need for NGS to determine the geoid, or a level
surface near the geoid, in order to provide a well-defined datum for orthometric heights.

The second issue asserts that it is not straightforward to produce a globally-acceptable def-
inition of the geoid. If one searches for a physics-based definition of the geoid, one finds that,
according to Smith (1998, p.17), “The Earth’s gravity potential field contains infinitely many
level surfaces. . . The geoid is one such surface with a particular potential value, W0.” W0 is a
fundamental geodetic parameter (Burša 1995, Groten 2004) and its value has been estimated by
using sea surface topography models (also called dynamic ocean topography models) and spher-
ical harmonic expansions of satellite altimetry data (e.g., (Burša 1969, Burša 1994, Nesvorny &
Sima 1994, Burša, Radej, Sima, True & Vatrt 1997, Burša, Kouba, Kumar, Müller, Radej, True, V.
& Vojt́ı̌sková 1999) as well as GPS + orthometric height observations (Grafarend & Ardalan 1997).
More recently (summer 2005, January/February 2006), research conducted in a joint effort between
NGS, the National Aeronautics and Space Administration Goddard Flight Center and Naval Re-
search Laboratory personnel is attempting to model the geoid by coupling sea surface topography
model results with airborne gravimetry and Light Detection And Ranging (LIDAR) measurements
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in a manner similar to the aforementioned, space-based altimetry efforts. If successful, this work
will result in another solution to the ongoing problem of determining W0 with particular focus
on the coastal regions of the U.S., c.f. Smith & Roman (2001, p.472). NGS is also examining
earth gravity models (EGM’s) derived from the satellite-based Gravity Recovery and Climate Ex-
periment (GRACE) (Tapley, Bettadpur, Watkins & Reigber 2004) and (soon) Gravity Field and
Steady-State Ocean Circulation Explorer (GOCE) data (Rebhan, Aguirre & Johannessen 2000) to
establish higher confidence in the long wavelengths in EGM’s (i.e., macroscopic scale features in
the geoid model). Aerogravity data are being collecting to try and bridge the gaps at the shorelines
between terrestrial data and the deep ocean and altimeter-implied gravity anomalies. EGM’s and
aerogravity data are being used to cross-check each other and the existing terrestrial data.

Even so, there is no consensus as to which value for W0 should be chosen. Smith (1998) suggested
W0 could be chosen at least two ways: pick a “reasonable” value or adopt a so-called “best fitting
ellipsoid.” Hipkin (2002) has argued for the first approach: “To me it seems inevitable that, in
the near future, we shall adopt a vertical reference system based on adopting a gravity model and
one that incorporates W = W0 ≡ U0 to define its datum,” with the justification (ibid.) that,
“Nowadays, when observations are much more precise, their differences [between mean sea surface
heights at various measuring stations] are distinguishable and present practice leads to confusion. It
is now essential that we no longer associate mean sea level with any aspect of defining the geoid.” In
fact, G99SSS and GEOID99 were computed by choosing to model a specific W = W0 surface (Smith
& Roman 2001). Defining W0 ≡ U0 is unnecessary because it is computable as the zero-order geoid
undulation (Smith 2006, personal communication). Other researchers have explored the second
alternative by using the altimetry and GPS+leveling methods mentioned above. However, different
level surfaces fill the needs of different user groups better than others. Moreover, it is probably
unsatisfactory to define a single potential value for all time because mean sea level is constantly
changing due to, for example, the changing amount of water in the oceans, plate tectonics changing
the shape and volume of the ocean basins and the continents, and “thermal expansion of the oceans
changing ocean density resulting in changing sea levels with little corresponding displacement of
the equipotential surface” (Hipkin 2002). The geoid is constantly evolving, which leads to the need
for episodic datum releases, as is done in the U.S. with mean sea level. If a global vertical datum is
defined, it will only be adopted if it meets the needs of those who use it. With the United States’
commitment to orthometric heights comes a need to define the geoid into the foreseeable future.

3.6 Summary

Heights derived through differential spirit leveling, ellipsoid and geoid heights, orthometric heights,
geopotential numbers, dynamic heights, and normal heights were defined and compared regarding
their suitability as an engineering tool and to reflect hydraulic head. It was shown that differen-
tial leveling heights provide neither single-valued heights nor an equipotential surface, resulting in
theoretical misclosures of leveling circuits. Orthometric heights are single-valued but do not de-
fine level surfaces and require an approximation in their determination. Geopotential numbers are
single-valued and define level surfaces but do not have linear units. Dynamics heights are single-
valued, define level surfaces, are not intrinsically geometric in spite of having linear units, and often
have unacceptably large correction terms far away from the latitude at which they are normalized.
Normal heights are geometric, single-valued, have global applicability and can be realized without
assumptions but do not define level surfaces. There is, in fact, no single height system that is
both geometric and honors level surfaces simultaneously because these two concepts are physically
incompatible due to the non-parallelism of the equipotential surfaces of the Earth’s gravity field.
Two modern vertical datums in use in North America, NAVD 88 and IGLD 85, express heights
as either Helmert orthometric heights or dynamic heights, respectively. It was shown that this
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difference is, in one sense, cosmetic because these heights amount to different scalings of the same
geopotential numbers. Nevertheless, Helmert orthometric heights and dynamic heights are incom-
mensurate. The fact that there are disparate height systems reflect the needs and, to some extent,
the philosophies behind their creation. No one height system is clearly better than the others in
all counts.

Different organizations and nations have chosen various potentials to be their geoid for reasons
that suit their purposes best. Others have argued that the gravity potential value W = W0 = U0

could be adopted to be the geoid’s potential, which is attractive for some scientific purposes, though
the U0 of GRS 80 is no better or worse choice than any other U0. However, the United States is
committed to orthometric heights and NGS is actively engaged in measurements to locate the geoid
based on LIDAR observations, gravimetric geoid models and sea surface topography models.



Chapter 4

GPS Heighting

4.1 Preamble

This monograph was originally published as a series of four articles appearing in the Surveying and
Land Information Science. Each chapter corresponds to one of the original papers. This paper
should be cited as

Meyer, Thomas H., Roman, Daniel R., and Zilkoski, David B. (2005) What does height really
mean? Part IV: GPS Heighting. In Surveying and Land Information Science, 66(3): 165-183.

This is the final paper in a four-part series examining the fundamental question, “What does
the word height really mean?” The creation of this series was motivated by the National Geode-
tic Survey’s (NGS) embarking on a height modernization program as a result of which NGS will
publish measured ellipsoid heights and computed Helmert orthometric heights for vertical bench
marks. Practicing surveyors will therefore encounter Helmert orthometric heights computed from
Global Positioning System (GPS) ellipsoid heights and geoid heights determined from geoid models
as their published vertical control coordinate, rather than adjusted orthometric heights determined
by spirit leveling. It is our goal to explain the meanings of these terms in hopes of eliminating
confusion and preventing mistakes that may arise over this change. The first paper in the series
reviewed reference ellipsoids and mean sea level datums. The second paper reviewed the physics of
heights culminating in a simple development of the geoid in order to explain why mean sea level
stations are not all at the same orthometric height. The third paper introduced orthometric heights,
geopotential numbers, dynamic heights, normal heights, and height systems. This fourth paper is
composed of two sections. The first considers the stability of the geoid as a datum. The second is
a review of current best practices for heights measured with the Global Positioning System (GPS),
essentially taking the form of a commentary on NGS’ guidelines for high-accuracy ellipsoid and
orthometric height determination using GPS.

JULIET : And not impute this yielding to light love,
Which the dark night hath so discovered.
ROMEO: Lady, by yonder blessed moon I vow,
That tips with silver all these fruit-tree tops–
JULIET: O, swear not by the moon, th’ inconstant moon,
That monthly changes in her circle orb,
Lest that thy love prove likewise variable.

– William Shakespeare: Romeo and Juliet-The Balcony Scene (Act 2, Scene 2)

43
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4.2 Vertical Datum Stability

Stability is a desirable quality for a datum, meaning that a datum ought not to change with time-
this is a concept well understood by surveyors. The purpose of this series of papers is to explore
issues pertaining to determining orthometric heights with GPS technology at the accuracy on the
order of centimeters; so if the datums to which the height systems are referred vary by this amount
or more, then these effects must be taken into account and removed. Therefore, let us consider the
geoid in this light: is the geoid stable or does it change with time and, if so, how quickly and by
how much?

An investigation into the variability of the geoid is equivalent to an investigation into the
variability of the Earth’s gravity potential field; it is a subject in the field of geodynamics. Changes
in Earth’s gravity are caused by changes in (1) the Earth’s diurnal rotation that produces the
centrifugal force component of gravity; (2) the Earth’s mass and its distribution; or (3) the spatial
arrangement of objects massive enough and near enough that their gravitational fields have a
discernible effect on the geoid.

4.2.1 Changes in the Earth’s Rotation

The Earth’s diurnal rotation is not constant in velocity or direction. It is known that the length of
the day is decreasing by about two milliseconds per century and that there are seasonal variations
(with periods on the order of a month) on the same order ((Vańıček & Krakiwsky 1986, p. 68).
Consequently, the Earth’s centrifugal force is likewise diminishing and variable. However, these
variations are far too small (on the order of 10−12 radians s−1) to change the Earth’s centrifugal
force at a discernible level in faster than a geologic time frame.

The rotational axis of the Earth slowly traces a circle on the celestial sphere, the same motion
that can be observed in a spinning top. This motion is called {precession. The Earth’s precession
is caused by the equatorial bulges not aligning in the plane of the ecliptic (the plane in which
the Earth orbits the sun), thereby giving rise to a torque from the gravitational attraction of the
sun (Vańıček & Krakiwsky 1986, p.59). The Earth’s precession is slow, with its axis returning to
a previous orientation once in approximately 25765 years, a period known as a Platonic year.
Likewise, the equatorial bulges are not aligned with the Moon’s orbital plane, which is inclined 511’
to the ecliptic. The intersection of the Moon’s orbital plane with the ecliptic is known as the nodal
line, and the nodal line rotates once in 18.6 years, the Metonic cycle. This constant realignment
of the Moon with the Earth also affects the orientation of the Earth’s rotational axis, causing a
motion called nutation (Vańıček & Krakiwsky 1986) and (Volgyesi 2006, p.61).

There are additional, smaller perturbations as well. The motion of the Earth’s rotational axis in
the celestial reference frame affects astronomic and satellite observations but not gravity because,
although the direction of the centrifugal force vector is changing, this change was brought about
by a motion of the Earth itself, so the relative change is zero. However, actual movement of the
rotational axis relative to the Earth’s crust itself (known as “Polar Motion” or “Polar Wobble”)
does affect gravity, because the direction of the centrifugal force vector in this case is changing
relative to the Earth’s crust. These small changes are only on the order of a few nanoGals, well
below the noise level of most gravity measurements.

4.2.2 Changes in the Earth’s Mass

The Earth’s mass can increase or decrease, and it can be redistributed. Concerning the former, the
Earth does gain mass almost continuously due to a stream of space debris entering the atmosphere
and, occasionally, striking the Earth’s surface. Similarly, the Earth is constantly loosing mass as
gaseous molecules too light to be bound by gravity drift off into space (e.g., helium gas). Neither
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the addition nor the removal of mass changes the Earth’s gravity field enough to be of concern in
this paper.

The Earth’s mass is redistributed in various ways including post-glacial rebound, melting ice
caps and glaciers, the Earth’s fluid outer core, the oceans (Cazenave & Nerem 2002), and earth-
quakes. For example, earthquakes can be caused by the motion of tectonic plates along their
margins, and this motion causes a change in the Earth’s shape. Earthquakes can cause a measur-
able change in the Earth’s rotation velocity, and thus its gravity, by changing one of its moments
of inertia (Chao & Gross 1987, D.E. & Manshina 1971, Soldati & Spada 1999). The Sumatra,
Indonesia, earthquake of December 26, 2004 was such an event. It decreased the length of day by
2.68 microseconds, shifted the “mean North pole” about 2.5 cm in the direction of 145 degrees East
Longitude, and decreased the Earth’s flattening by about one part in 10 billion (Buis 2005). The
uplift of plates due to tectonic or post-glacial activities affects ellipsoidal heights, as well as having
a smaller gravity-based effect which changes the geoid. The National Geodetic Survey is planning
to engage in research which tracks the time-dependent changes of the geoid due to these effects.

4.2.3 Tides

People who have been at an ocean shore for half a day or more have had the opportunity to watch
the ocean advance inland and then retreat back out to sea. This motion is caused primarily by the
gravitational attraction of the Moon and, to a lesser degree, the Sun. Therefore, the definition of
tide found in NGS’ Geodetic Glossary may be somewhat surprising.

Tide (1) Periodic changes in the shape of the Earth, other planets or their moons that
relate to the positions of the Sun, Moon, and other members of the solar system.

Note that this definition is not about the oceans, per se. Instead, it speaks of, among other things, a
change of the shape of the Earth itself, the Earth tide or body tide. It is commonplace knowledge
that the Moon moves the oceans; it deforms them to set them in motion. But, what is probably not
so well known is that the Earth’s core, mantle, and crust have their shape deformed in a manner
similar to the deformation of the oceans. The NGS definition continues:

In particular, (2) those changes in the size and shape of a body that are caused by
movement through the gravitational field of another body. The word is most frequently
used to refer to changes in size and shape of the Earth in response to the gravitational
attractions of the other members of the solar system, in particular, the Moon and sun.
In such cases, three different tides are usually distinguished: the atmospheric tide, which
acts on the gaseous envelope of the Earth; the earth tide, which acts on the solid Earth;
and the ocean tide (usually simply called “the tide”), which acts on the hydrosphere.

The effects of the tides are numerous and complicated, so perhaps the first question to consider
is whether the tides cause enough of an effect to be of concern. Is the earth tide large enough
to affect the geoid in any practical way? It happens that there are two high and low earth tides
each day, with the highest being on the order of a 50 cm displacement from its undeformed shape
(Moritz 1980, p.477)! So, the answer is “yes;” we must take tides into consideration.

Tides on the Earth arise due to the influences from all celestial bodies. The Sun and the Moon
produce the largest effects by far, but the other planets have a discernable affect, albeit too small
to impact GPS positioning (Wilhelm & Wenzel 1997, p.11). All celestial bodies create tides in the
same way, the only difference being the details of how these manifest themselves. Therefore, we will
consider the effects created by the Moon, with the understanding that they apply to any celestial
body with the appropriate change of mass and distance variables.
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4.2.4 Tidal Gravitational Attraction and Potential

According to Newton, force gives rise to motion by accelerating mass. The gravitational force of
the Moon on the Earth itself is found using Equation 2.2 on page 17:

FE = −GMmr̂
|r|2 , (4.1)

where:
r= a vector from the Moon’s center to the Earth’s center (note the negative sign in Equation 4.1
reversing the direction of the vector so that the force is directed from the Earth’s center towards
the moon’s center);
M, m = the mass of the Earth and the Moon, respectively; and
FE = the gravitational force vector produced by the Moon on the Earth.

The gravitational force of the Earth exerted on the Moon can be found simply by defining r
to have the opposite direction, so the magnitudes of the two forces are equal. The gravitational
attraction of the Earth on the Moon causes the Moon to orbit the Earth rather than to move off
into space. However, Equation 4.1 also means that the Earth is orbiting the Moon, but this motion
is much less obvious due to the difference in masses of the two bodies. If we take 5.9742 × 1027 g
to be the Earth’s mass, 7.38 × 1025 g to be the Moon’s mass, and 3.84 × 108 m to be their mean
separation, then the barycenter of the Earth-Moon system can be found to be at a point on a line
connecting their two centers approximately 4.69 × 106 m from the Earth’s center. This point is
inside the Earth, being about 73.5 percent of the length of the GRS 80 semimajor axis.

It is critical to understand the nature of the motion of the Earth’s orbiting the Moon. The
diurnal rotation of the Earth, the source of days and nights, is a rotation around its axis, which
is nominally the North Pole. Points on a rigid rotating body that are on different radii move in
different directions and at different instantaneous linear velocities (see Figure IV1a). However, a
rigid body can rotate around only one axis at any moment in time. Therefore, the Earth does
not rotate about the Earth-Moon barycenter. To understand this orbital motion, envision someone
waxing a tabletop with a cloth by rubbing it in a circular motion, such that their fingers remain
parallel to some wall in the room. If the circular motion of the cloth has a fairly small radius,
then the point around which the cloth is moving is always beneath the cloth, just as the motion
of the Earth around the barycenter has its center at a point within the Earth. Now, it is apparent
that every point on the cloth is actually moving with the same velocity (same direction and speed).
Similarly, the orbital motion of the Earth around the Moon gives rise to a constant acceleration that
is always directed opposite to the line connecting the Earth’s center to the Moon’s. In particular,
everywhere and everything on and in the Earth is accelerating away from the Moon as if the Earth
were moving in a straight line along the instantaneous axis between them; see Figure IV.1b. This
acceleration gives rise to a component of observable gravity that is at most 3.4 percent of the total
acceleration (Vańıček & Krakiwsky 1986, p.125).

The moon’s gravitational attraction gives rise to a force at any particular place on the Earth
that is directed (approximately1) along the line from the point of interest to the Moon’s center. In
contrast, the orbital acceleration experienced at that place is always parallel to the line connecting
the Earth-Moon centers, so these forces are not generally parallel to each other. Furthermore,
places on the side of the Earth opposite the Moon experience a smaller attraction than places on
the same side as the Moon due to being closer to the Moon, giving rise to the asymmetry evident

1The moon is too close to the Earth for this to be exact. The actual direction of the vector would be determined by
triple integrating over the Moon’s mass, and approximately end up pointing at the Moon’s center of mass, approximate
because the Moon is not a perfectly homogeneous sphere.
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To the Moon

To the Moon

a. b.

Figure 4.1: Panel (a) presents the instantaneous velocity vectors of four places on the Earth; the
acceleration vectors (not shown) would be perpendicular to the velocity vectors directed radially
toward the rotation axis. The magnitude and direction of these velocities are functions of the
distances and directions to the rotation axis, shown as a plus sign. Panel (b) presents the acceler-
ation vectors of the same places at two different times of the month, showing how the acceleration
magnitude is constant and its direction is always away from the moon.

in Figure IV.2. Each of the vectors in Figure IV.2 indicates the force vector of the place located
at the tail of the vector resulting from the combination of the orbital acceleration and the Moon’s
attraction at that place.

Figure IV.3 shows the details of the vector addition of three points of interest from Figure
IV.2. Orange vectors are the Moon’s attraction; their non-parallelism with the orbital acceleration
vectors, shown in blue, is greatly exaggerated. The vector result of the addition of these two
vectors is shown in black. Figure IV.3a represents the situation at point a, which is located at the
top of the circle in Figure IV.2. The Moon’s attraction is the most non-parallel with the orbital
acceleration at this place and its antipodal counterpart. Given the roughly equal magnitude of
the orbital acceleration and Moon attraction forces, their component in the direction of the Moon
largely cancels at a, leaving a small result oriented sharply toward the Earth’s middle. Figure
IV.3b represents the situation at b which is located at the point furthest from the Moon. The
Moon’s attraction is parallel but opposite in direction with the orbital acceleration at this place.
The orbital acceleration is moderately stronger than the Moon’s attraction here, creating the force
primarily responsible for the lower high tide of the day. Figure IV.3c represents the situation at c
which is located at the point closest to the Moon. The Moon’s attraction is considerably stronger
here than the orbital acceleration, creating the force that is primarily responsible for the higher
tide of the day (see Vańıček & Krakiwsky (1986, p.124) and Bearman (1999, pp. 52-61)).

The magnitude and direction of the Moon’s attraction is periodic due to the nature of its orbit
around the Earth. The situation is complicated but made tractable by accounting for individual
tidal constituents. It is possible to decompose the Moon’s attraction into individual constituents,
a constituent being a sinusoid with a particular amplitude, frequency and phase that arises due to
a particular phenomenon. As discussed by Boon (2004), some of the prominent tidal constituents
are caused by

• the inclination of the Moon’s orbital plane with respect to the ecliptic giving rise to the lunar
declination (tropic-equatorial) cycle,

• the Sun’s attraction giving rise to the spring-neap cycle,

• the eccentricity of the Moon’s orbit giving rise to the perigean-apogean cycle, and

• the precession of the lunar nodes giving rise to the metonic cycle.
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Figure 4.2: Arrows indicate force vectors that are the combination of the moon’s attraction and
the Earth’s orbital acceleration around the Earth-moon barycenter. This force is identically zero
at the Earth center of gravity. The two forces generally act in opposite directions. Points closer
to the moon experience more of the moon’s attraction whereas points furthest from the moon
primarily experience less of the moon’s attraction; c.f. (Bearman 1999, pp.54-56) and (Vanicek and
Krakiwsky 1996, p.124).

Figure 4.3: Details of the force combinations at three places of interest; c.f. Fig. IV.2.
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Figure 4.4: Two simulations of tide cycles illustrating the variety of possible affects.

Simple ocean tide models include as few as six constituents; complicated models can incorporate
more than 100 (Wilhelm & Wenzel 1997). These models produce tidal predictions such as those
shown in Figure IV.4. The predictions in Figure IV.4 use constituents from Boon (2004, pp.97-102)
and clearly show higher high water, lower high water, higher lower water, and lower low water, as
well as many longer-period variations.

Up to this point we have been concerned with gravity force. We now consider how tides affect
gravity potential because, after all, the geoid (an equipotential surface) is a principle datum of
interest, hence we must examine how these temporal changes come into play. The gravitational
potential field created by the Moon at some point of interest can be expressed as an infinite series
of which only the second term is important for tides. This second term W2 takes the form of the
expression (Vańıček 1980, p.5, Equation (12)):

W2 ≈ D

⎡
⎢⎣

sectorial︷ ︸︸ ︷
cos2 φ cos2 δ cos 2t +

tesseral︷ ︸︸ ︷
sin 2φ sin 2δ cos t+

zonal︷ ︸︸ ︷
3(sin2 φ − 1/3)(sin2 δ − 1/3)

⎤
⎥⎦ , (4.2)

where:
D = Doodson’s constant (Doodson 1922);
φ = geocentric latitude;
δ = the declination of the Moon; and
t = the Moon’s hour angle (see any standard work on celestial mechanics for exact definitions of δ
and t).

Doodson’s constant is given by Vańıček (1980, p.4, Equation (7)) as:

D =
3
4
Gm

R2

r3
m

, (IV.3)

where:
G = the universal gravitation constant;
R = the mean (equivoluminous) radius of the Earth; and
rm = the mean distance to the Moon.

D has a value of approximately 2.6277 × 107 cm mgal. Equation 4.2 consists of three terms
within the brackets. The first term contains sectorial constituents; the second term contains
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Sectorial Potential

Figure 4.5: The sectorial constituent of tidal potential. The green line indicates the Equator.
The red and blue lines indicate the Prime Meridian/International Date line and the 90/270 degree
meridians at some arbitrary moment in time. In particular, these circles give the viewer a sense of
where the potential is outside or inside the geoid. The oceans will try to conform to the shape of
this potential field and, thus, the sectorial constituent gives rise to the two high/low tides each day.

tesseral constituents, and the third term contains zonal constituents. These three components
are shown in Figures IV.5-7 and their combination in Figure IV.8. Sectorial constituents vary in
longitude (time), much like the sectors of an orange, and give rise to the two daily tides. Tesseral
constituents possess both latitude and longitude components and give rise to patterns resembling
the tessellation of a checker board. The zonal constituents do not vary in time and give rise to
so-called “permanent” tides.

4.2.5 Body Tides

The first clear evidence of body tides came from the measurement of ocean tides, which showed that
they were consistently about two-thirds as high as Newton’s physics predicted. It was eventually
shown that the missing one-third was due to deformation of the Earth itself, moving with the oceans
(Melchior 1974). The tides of the solid Earth behave in the same manner as the ocean tides, but in
a simpler manner because the Earth deforms like an elastic solid at the frequencies of tides, rather
than with all the freedom of a liquid, like the oceans.

It is remarkable that the effect of the Moon’s potential field upon the Earth can be described
with such high accuracy by such a simple equation as Equation 4.2; compare this with the effort
necessary to determine the geoid! The simplicity of Equation (IV.2) is because (1) the Moon is
far enough away to be treated as a point mass, and (2) the motion of the Moon is very accurately
described by celestial mechanics. Therefore, no gravity observations are needed to determine the
potential from the Moon; it all falls out of the mathematics.

The parameters that describe the response of the Earth’s shape and gravitational potential
field to tidal forces are called Love and Shida numbers, which are empirically derived. They are
used in equations similar to Equation 4.2 and sufficiently capture the deformation of the Earth
so that tidal affects may be removed from geoid models, gravity observations, GPS observations,
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Zonal Potential

Figure 4.6: The zonal constituent of tidal potential. The red and blue lines are as in Fig. IV.5; the
equatorial green line is entirely inside the potential surface. The zonal constituent to tidal potential
gives rise to latitudinal tides because it is a function of latitude.

Tesseral Potential

Figure 4.7: The tesseral constituent of tidal potential. The green, red and blue lines are as in
Fig. IV.5. The tesseral constituent to tidal potential gives rise to both longitudinal and latitudinal
tides, producing a somewhat distorted looking result, which is highly exaggerated in the Figure for
clarity. The tesseral constituent accounts for the moon’s orbital plane being inclined by about 5
degrees from the plane of the ecliptic.
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Total Potential

Figure 4.8: The total tidal potential is the combination of the sectorial, zonal, and tesseral con-
stituents. The green, red and blue lines are as in Fig. IV.5. The complicated result provides some
insight into why tides have such a wide variety of behaviors.

and other geodetic quantities (Vańıček 1980). However, it should be noted that the permanent
tides (those portions of the tidal equations which describe the non-time-varying, or “permanent”
deformations) are not completely determinable empirically. There are two components of this
permanent tide: first, the permanent deformation of Earth’s geopotential field due to the existence
of the permanent (non-zero time-averaged) Sun and Moon and second, the permanent deformation
of Earth’s geopotential field due to the existence of the permanent deformation of Earth’s crust
(which, in turn, is due to the existence of the permanent Sun and Moon).

The first part (called the “direct” component of the permanent Earth tide) is computable
empirically, as it deals solely with the Sun’s and Moon’s mass affecting the Earth’s geopotential
field. The second part is not computable empirically. This is because the permanent deformation
of the Earth’s crust can not be directly observed. The Earth’s crust perpetually (“permanently”)
exhibits a deformation due to the permanent existence of the Sun and Moon. Because we can
not observe how the crust would react without a permanent Sun and Moon, we can not determine
empirically how much permanent deformation actually exists (that is, we can not determine a “zero
degree Love number” for the Earth), and thus can not compute what the effect of this permanent
crustal deformation is on the Earth’s geopotential.

4.2.6 Ocean Tides

Ocean tides affect the geoid by redistributing the mass of the oceans, which has the following
effects. First, the redistribution of the water in the oceans creates a discernible change in the geoid.
Second, the weight of the water deforms the Earth below it, in addition to the tidal potential also
deforming the Earth (Vańıček 1980, pp. 9-12). The deformation of the Earth due to tidal loading
can also be modeled by certain Love numbers that parameterize Equation 4.2. The liquid nature of
the oceans allows dramatically more complexity in their response to gravitational attraction and,
consequently, its modeling is likewise more complex.
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4.3 Global Navigation Satellite System (GNSS) Heighting

Global navigation satellite systems, such as the European Union’s Galileo system, the Russian
Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS), and the U.S. Global Positioning
System (GPS) offer, in conjunction with a highly accurate model of the gravimetric geoid, the po-
tential of determining orthometric heights with centimeter accuracy without conventional leveling.
The prospect of establishing vertical control in remote locations without running levels to estab-
lished distant bench marks holds great promises of time savings, and therefore, cost savings. These
savings are the reward for surveyors who practice GPS heighting and were a primary motivation for
this series. According to Zilkoski, Carlson & Smith (2000), “GPS-derived orthometric heights can
now provide a viable alternative to classical geodetic leveling techniques for many applications.”

Deriving orthometric heights from ellipsoid heights is mathematically very simple. As explained
in the previous papers, a geoid height is the geometrical separation (distance) from some reference
ellipsoid to the geoid, an ellipsoid height is the geometrical separation from some reference ellipsoid
to a point of interest, and an orthometric height is the length of the plumb line from the geoid to a
point of interest. Were plumb lines straight lines and if they were normal to the reference ellipsoid,
these three definitions would immediately lead to an exact relationship:

H = h − N, (4.3)

where
H = orthometric height;
N = geoid height; and
h = ellipsoid height.
However, plumb lines are curved and not normal to reference ellipsoids, in general. Therefore, we
cannot be correct in using an equality relationship and must instead write:

H ≈ h − N. (4.4)

Although Equation 4.4 is not exact, it is close enough for most practical purposes (Hein 1985,
Zilkoski & Hothem 1989, Zilkoski 1990, Henning, Carlson & Zilkoski 1998, Vańıček, Huang, Novak,
Pagiatakis, Veronneau, Martinec & Featherstone 1999). For example, an extreme case of a two-
arc-minute deflection of the vertical would introduce less than two millimeters of error in the
orthometric height (Tenzer et al. 2005, p.89), based on Equation 4.4.

Much of the information from this series is contained within Equation Much of the information
from this series is contained within Equation 4.4 (Hwang & Hsiao 2003, Kao et al. 2000, Sun 2002).
For example, the choice of the reference ellipsoid is important. Local geodetic reference ellipsoids
are generally not geocentric, so their normal directions could differ significantly from those of
ellipsoids that are geocentric insofar as was possible at the time of their creation. It is important
not to mix heighting systems. The GPS surveyor must therefore use a reference ellipsoid of a datum
that matches the reference ellipsoid of the gravimetric geoid model. In the U.S., NGS recommends
using GEOID03 which is modeled relative to the NAD 83 datum (which uses the GRS 80 ellipsoid).
Therefore, for example, GPS heighting should not be done with GEOID03 and the WGS 84 datum.
Also, because Equation 4.4 is an approximation rather than an equality (due to the non-parallelism
of the equipotential surfaces), dynamic/orthometric corrections will have to be applied to (the
purely geometric) spirit leveling measurements (Strang van Hees 1992, Hwang & Hsiao 2003, Kao
et al. 2000, Sun 2002). For example, the choice of the reference ellipsoid is important. Local geodetic
reference ellipsoids are generally not geocentric, so their normal directions could differ significantly
from those of ellipsoids that are geocentric insofar as was possible at the time of their creation. It is
important not to mix heighting systems. The GPS surveyor must therefore use a reference ellipsoid
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of a datum that matches the reference ellipsoid of the gravimetric geoid model. In the U.S., NGS
recommends using GEOID03 which is modeled relative to the NAD 83 datum (which uses the GRS
80 ellipsoid). Therefore, for example, GPS heighting should not be done with GEOID03 and the
WGS 84 datum. Also, because Equation 4.4 is an approximation rather than an equality (due to
the non-parallelism of the equipotential surfaces), dynamic/orthometric corrections will have to be
applied to (the purely geometric) spirit leveling measurements (Strang van Hees 1992).

In theory, GPS heighting is simple: determine an ellipsoid height with a GPS receiver and
subtract the geoid height, which is provided by a gravimetric geoid model, to obtain the approximate
orthometric height. In practice, things are more complicated. This fourth paper now presents a
survey of GPS heighting error sources and best practice guidelines put forth by NGS and other
authors in the peer-reviewed literature. Although this paper depends in large part on previous
work by Zilkoski and others at the NGS (Zilkoski, D’Onofrio & Frakes 1997), it is not our intention
to restate that material verbatim (Zilkoski et al. 2000). Instead, this final paper will provide
commentary on the guidelines and explanations why some of the recommendations were made. We
will emphasize the key issues necessary for achieving the accuracies in those guidelines and provide
examples from the literature that illustrate them, when possible. More detailed and comprehensive
treatments include (Leick 1995, Hofmann-Wellenhof, Lichtenegger & Collins 1997, Seeber 2003,
Hofmann-Wellenhof & Moritz 2005).

4.4 Error Sources

Effective GPS heighting depends upon having an understanding of the measurement error budget
and acting in such a manner as to eliminate or mitigate those errors. Error sources have been
grouped in three main categories: satellite position and clock errors, signal propagation errors, and
receiver errors (Seeber 2003). We will discuss these error sources and explain what, if anything,
can or should be done about them according to best practices reported in the current literature.
Although it is beyond the scope of this paper to review GNSS as a whole, the reader is referred to the
large existing literature on the topic, such as (Leick 1995, Hofmann-Wellenhof et al. 1997, Seeber
2003, Van Sickle 1996) and collections of articles published by the U.S. Institute of Navigation
(ION). However, before discussing these error sources, we present issues that arise due to the Earth
itself.

4.4.1 Geophysics

There are several issues pertaining to the Earth itself that factor into GNSS heighting. Most of
these pertain to the dynamic shape of the Earth but one arises simply because the Earth is opaque
at the radio frequencies broadcast by GNSS satellites.

No Satellites Below

We begin by explaining why it is that GNSS positioning cannot be expected to be as accurate for
vertical coordinates as for horizontal ones. Currently operational GNSS satellites, abbreviated as
SV for “space vehicle,” are stationed in orbital planes inclined from the equator by 55 degrees (for
GPS) or 64.8 degrees (for GLONASS). Consequently, any place on Earth is always surrounded by
SVs, above and below. However, the Earth completely blocks signals from SVs below the horizon
from reaching a receiver; the radio signals cannot penetrate solid rock. Therefore, receivers on
the ground cannot detect signals from SVs below the horizon. As a result, while it is possible
to be surrounded on all azimuth points by SVs, one cannot be surrounded on all zenith angles
(essentially none greater than 90 degrees). Consequently, the local vertical is not controlled as
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well as the local horizontal. As stated by Brunner & Walsh (1993), “We note that even without
any tropospheric propagation errors, an inherent geometrical weakness exists in the GPS baseline
results that usually makes the determination of height differences worse by a factor of about 3
compared with the horizontal baseline components.” Therefore, we cannot expect the best GNSS
heighting to be as accurate as the best GNSS horizontal positioning.

Earth Tides, Ocean and Atmospheric Loading

GNSS post-processing software often includes tide corrections which remove these effects, creating
a tide-free system. See the opening discussion for more elaboration.

Crustal Motion

Plate tectonics constantly move the Earth’s crust both horizontally and vertically. Horizontal
motions can be accounted for by modeling the position and velocity of fiducial stations and then
interpolating to places of interest. The NGS Horizontal Time-Dependent Positioning (HTDP)
software (Snay 1999, Snay 2003) allows U.S. users to reconcile control coordinates published in
the past with current position measurements that have moved due to plate motion, including
earthquakes. Of particular note to heighting, a vertical equivalent, VTDP, has been created for
the lower Mississippi valley and the northern Gulf Coast (Shinkle & Dokka 2004). Vertical crustal
motion includes both tectonic crustal motion and anthropogenic factors, such as liquid extraction
resulting in ground subsidence (Gabrysch & Coplin 1990), which complicates matters considerably.

4.4.2 Satellite Position and Clock Errors

We now begin a discussion of the GNSS error budget. Because GNSS positioning is accomplished
by a process similar to trilateration there are two key pieces of information upon which GNSS
positioning depends: signal propagation time and the location of the SVs. Signal propagation time
is used to infer the range from the SVs to a receiver antenna’s phase center, and SV locations
are used as the coordinates of the known points in the trilateration scheme. However, the signal
propagation time is biased due to an immeasurable time offset between GPS time and a receiver’s
internal clock; this results in a pseudo-range rather than the actual range. The implications of
this will be discussed below. Any errors in locating a SV and any inconsistencies in the clocks on
board the SVs that govern its operation result directly in positioning errors.

Orbit Errors and Ephemerides

Knowing the position of the satellites at any given moment in time is a cornerstone of how GNSS
positioning works. The satellites themselves should be perceived as being moving monuments
because pseudo-range positioning (positioning using pseudo-ranges) is based on trilateration: given
three (or more) known locations and a distance from those locations to the point of interest,
determine the coordinates of the point of interest.2 Therefore, since the satellites are in motion, it
does not suffice to publish a single set of coordinates for them. Instead, ephemerides are created for
each SV so that the processing software can determine SV positions at the moment of transmission,
which form the basis for the trilateration.

In broad strokes, GNSS ephemerides come in two types: broadcast and precise. Broadcast
ephemerides, as the name implies, are broadcast by the SVs and read by GNSS receivers as they

2In fact, three known locations and distances do not uniquely determine a three-dimensional position; the problem
is reduced to a selection between two solutions. One of these solutions will either be deep inside the Earth or in outer
space and can be discarded by inspection for terrestrial GNSS positioning. See Awange & Grafarend (2005) for novel
solutions of this problem based on Groebner bases.
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operate. Broadcast ephemerides are essentially highly educated, physics-based guesses about the
future locations of the SVs based on their past locations and velocities. Precise ephemerides
are produced by observing the SVs and deducing their positions after-the-fact. Needless to say,
broadcast ephemerides are not as accurate as precise ephemerides. The accuracy of the broadcast
ephemerides is currently around one to three meters (Seeber 2003).

The International GNSS Service (IGS) provides three types of precise ephemerides, which differ
by how much time elapses before they are available (IGS 2005). The most accurate are the “final
ephemerides” which are updated weekly with a latency of about 13 days and have accuracy reported
to be better than 5 cm (Seeber 2003). The “rapid ephemerides” are updated daily with a 17-hour
latency and an accuracy around 5 cm. Ultra-rapid ephemerides are updated four times daily with
a latency of either 3 hours (observed half) or none (predicted half) with an accuracy around 25
cm. It can be shown that the error introduced into computed positions varies by baseline length as
a function of ephemeris accuracy: the longer the baseline, the more accurate the ephemeris needs
to be (Eckl, Snay, Soler, Cline & Mader 2002) and (Seeber 2003, p.305). For high-accuracy GPS
heighting, final precise ephemerides are required by NGS guidelines (Zilkoski et al. 1997).

Satellite Clock Errors

Although GNSS satellites have onboard atomic time standards that are highly accurate and precise,
they are not perfect. Like all clocks, atomic clocks drift and experience unpredictable jumps, albeit
very small ones (Diddams, Bergquist, Jefferts, & Oates 2004, Flowers 2004). GPS time is a weighted
average of the clocks in the controlling station on Earth and the GPS satellite clocks. Each SV
clock is monitored for its offset from GPS time, and this time bias estimate is included with the
ephemerides, both broadcast and precise, to be accounted for in the positioning software.

4.4.3 GPS Signal Propagation Delay Errors

GNSS ranges are inferred by measuring a (biased) elapsed time from the satellite to the receiver;
it is biased due to an immeasurable time offset between GPS time and a receiver’s internal clock.
This elapsed time interval is scaled to be a distance by multiplying by the speed of light. Although
the speed of light is constant in a vacuum, electromagnetic waves propagating through media can
be delayed and refracted. GNSS signals propagate through the Earth’s atmosphere and are affected
by the ionosphere and the troposphere. Both of these atmospheric layers delay the signals, thus
introducing timing/ranging errors.

Ionosphere Delays

The ionosphere is a high-altitude (roughly 50 km to 1000 km above the Earth’s surface) part of the
atmosphere that is composed of charged particles that have been ionized by solar radiation. The
ionosphere refracts radio signals in a manner similar to how water in a glass refracts light, such
that a pencil appears to have a sharp bend in it. It happens that the ionosphere refracts radio-
frequency electromagnetic waves of different frequencies differently. Consequently, it delays the
two GPS broadcast frequencies, L1 and L2, differently. This difference can be detected by dual-
frequency receivers and subsequently virtually eliminated by post-processing. For more details
consult, for example, (Brunner & Walsh 1993, Hofmann-Wellenhof et al. 1997, Leick 1995, Seeber
2003). Single-frequency receivers cannot detect the ionosphere delays, but differencing processing
on short baselines can cancel out most of the error, leaving errors on the order of 1 to 2 ppm of
the interstation distance (Seeber 2003). The NGS guidelines require dual-frequency receivers for
baselines greater than 10 km, and they are the preferred type of GPS receiver for all observations
(Zilkoski et al. 1997).
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According to Jakowski, Standov & Klaehn (2005, p.3071), “The space weather is defined as
the set of all conditions -on the Sun, and in the solar wind, magnetosphere, ionosphere and the
thermosphere-that can influence the performance and reliability of space-borne and ground-based
technological systems and can endanger human life.” Space weather can significantly influence
the propagation of the SV transmissions through the ionosphere, resulting in a degradation of po-
sitioning quality (ibid). Dual-frequency receivers are not able to eliminate the problems caused
by severe space weather, hence observations should not be performed during severe ionospheric
storms. The National Oceanic and Atmospheric Administration (NOAA) includes space weather
reporting from its Space Environment Center, which is part of the National Weather Service
(http://www.sec.noaa.gov/).

Troposphere Delays

The troposphere is that part of the atmosphere in which weather (in the ordinary sense) occurs.
Atmospheric density gradients of the troposphere, like the ionosphere, refract GNSS radio waves.
However, the tropospheric delays do not depend upon the frequency of the electromagnetic waves.
No hardware exists today that can directly measure the delay created by the troposphere, so its
affect must be accounted for by modeling the troposphere or by treating it as an unknown nuisance
variable determined using least squares techniques.

The errors associated with the troposphere are considered the most problematic member of
the GNSS heighting error budget. According to Seeber (2003), “[tropospheric delay] is one of the
reasons why the height component is much worse than the horizontal components in precise GPS
positioning.” According to Brunner & Walsh (1993), “Tropospheric delay errors mainly affect the
accuracy of height differences. Today this must be considered the main limitation of the attainable
accuracy using GPS, which seems to be around 2.5 centimeters for height differences of baselines
longer than about 50 kilometers.”

Marshall, Schenewerk, Snay & Gutman (2001) performed a detailed study of the affect of tro-
pospheric modeling successfulness at addressing the tropospheric delay on baselines from 62 km
to 304 km in length. Based on their experiments conducted using the NGS Continuously Oper-
ating Reference Stations (CORS), they show significant reductions in height standard deviations
by increasing session duration from one to four hours, and that the choice of the tropospheric
model has a strong influence on the precision and accuracy of the resulting heights. Some of these
models depend upon measured tropospheric parameters such as atmospheric pressure, atmospheric
temperature, and relative humidity, i.e., the quantities that determine the static density of the
atmosphere and its density gradient. Others rely on standard models of the atmosphere and are
parameterized by latitude and day of the year. Another approach is to treat the tropospheric delay
as another unknown parameter and estimate it using statistics from the GPS observables. Marshall
et al. (2001) concluded that, “Session lengths shorter than two hours contain insufficient GPS data
to estimate both heights and nuisance parameters, and hence more accurate weather information
is needed to obtain more precise heights for these shorter sessions.” The models showed a large
amount of variability among each other and all of them displayed significant individual variability-
more than 5 cm. This fact would appear to contradict NGS claims that following their guidelines
should result in 2 cm - 5 cm ellipsoid height accuracy. The difference is the length of the baselines.
Marshall’s study had baselines not shorter than 60 km, but NGS requires lines no longer than 10
km. This is an important difference because the unmodeled tropospheric delay error is spatially
auto correlated, meaning that the closer two stations are, the more likely they are to “see” the same
tropospheric delay. If the delays were exactly the same, they would be canceled by post-processing
differencing. To what degree they are not the same, they do not cancel.

According to the current literature, measuring weather parameters is not very helpful. Marshall
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et al. (2001) found that, “For session lengths greater than two hours, we conclude that sufficiently
precise NAD [neutral atmospheric delay] modeling for geodetic activities may be achieved by cou-
pling nuisance parameter estimation with the relatively crude seasonal model.” This means that
weather measurements were not needed to achieve sufficiently precise error models. Brunner &
Walsh (1993) note that:

In general, the tropospheric delay models using meteorological ground observations
have produced rather poor, and in most cases worse, results compared with the results
from the default model values that replaced the actual observed meteorological values.
We would like to comment on this surprising finding. Taking accurate meteorological
observations is a somewhat difficult task, and frequently large observation errors can
occur. In addition, the closeness of the ground and very local micrometeorological
conditions severely affect meteorological observations.

These comments appear to support the conclusions found by Marshall et al. (2001). Recently, Ray,
Hilla, Dillinger & Mader (2005) noted succinctly: “To the central question, whether measured sur-
face met data can be used to improve geodetic performance, we find no such utility.” Nevertheless,
NGS guidelines require meteorological data to be collected (Zilkoski et al. 1997). It has been shown
(Marshall et al. 2001) that “Weather fronts may cause the GPS signal delay to vary by greater than
3 centimeters over a 1-hour period, potentially leading to ellipsoidal height errors exceeding 9 cm.”
Surface met data are not collected for modeling purposes. Rather, they are useful for a posteriori
error detection as they help to spot the passing of a weather front through the surveying network,
something that could possibly go unnoticed by the ground crews.

The affect of the troposphere increases with zenith angle. For this reason (among others) NGS
recommends a 15 degree minimum elevation mask (Zilkoski et al. 1997).

Multipath

One of the two GNSS observables is carrier phase: “carrier” refers to the unmodulated radio signal
broadcast by the SVs and “phase” refers to the total number of cycles of the carrier waves from
its transmission to its reception, including a partial wavelength at the end. In relative positioning,
baselines between phase centers are deduced by differencing phase observations from multiple SVs;
see Hofmann-Wellenhof et al. (1997) among many others for more details. Multipath is the situa-
tion where GNSS radio signals arrive at the receiver via more than one path. This happens by the
signal reflecting from some surface such as a chain link fence, a building, a car, or the ground. Ac-
cording to Seeber (2003), “Multipath influences on carrier phase observations produce a phase shift
that introduces a significant periodic bias of several centimeters into the range observation Their
propagation into height errors may reach ±15 cm (Georgiadou & Kleusberg 1988)”. Multipath also
affects pseudo-range derived positions, introducing errors potentially on the order of meters.

Multipath can be reduced by antenna design, principally choke rings and ground planes, and
by elevation masks. Multipath is more likely to occur at low elevation angles so, again, NGS
recommends a 15 degree minimum elevation mask (Zilkoski et al. 1997). Ground planes are known
to reduce multipath, especially spurious signals arriving at the receiver from below, perhaps being
reflected off the ground. Likewise, choke ring antennas mitigate multipath by attenuating reflected
signals. Therefore, NGS requires ground planes for GPS antennas and recommends choke rings
(Zilkoski et al. 1997). There are also software techniques for multipath reduction (e.g., Seeber,
Menge, Volksen, Wubbena & Schmitz (1997) that are available in some processing packages and,
sometimes, in the receiver itself (Townsend & Fenton 1994).
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Figure 4.9: This image depicts the location of a GPS receiver’s phase center as a function of the
elevation angle of the incoming GPS radio signal.

4.4.4 Receiver Errors and Interference

No instrument is perfect, and GNSS receivers are no exception. The receivers themselves cannot
determine positions exactly, but we know the error sources associated with the receiver hardware.
Also, since the presence of electromagnetic noise in the environment has the potential to interfere
with the GNSS radio signals, electromagnetic noise requires some attention, too.

Antenna Phase Center Variation

The electrical phase center of a GNSS receiver antenna is a point in space where the antenna detects
the radio signal broadcast from the satellites; it is the point whose coordinates are being determined.
That is to say, unless the position is reduced to the antenna reference point (ARP) or a surveying
marker, the latitude, longitude, and ellipsoid height reported by the GNSS post-processing package
are those of the phase center. Interestingly, the phase center is not on the physical surface of the
antenna; indeed, it is not on or in the hardware at all. It is above the antenna and, furthermore, it is
not a single location (see Figure IV.9). Although most modern antennas are azimuthally symmetric
electrically, local environmental conditions can produce dependences on azimuth. Therefore, phase
centers can change with the zenith and azimuth angle of the incoming signal. Additionally, the
phase center for L1 is typically different than that for L2 (Mader 1999). Because the phase center
is the position being determined by the receiver, as the satellites move, the phase centers move,
which is an effect called phase center variation (PCV). As a phase centers moves, its coordinates
change. If left uncorrected, phase center variations can introduce as much as a decimeter of error
into the vertical coordinate. The NGS antenna calibration program has produced models of phase
center variation that are available for downloading at http://www.ngs.noaa.gov/ANTCAL/. These
models can be entered into the post-processing software, which will adjust for the effect.

National Geodetic Survey publishes several coordinates for its CORS base stations. Coordinates
are currently given in the ITRF00 (epoch 1997.0) and NAD 83 (CORS96) datums for both the ARP
and the L1 phase center. Coordinates for the ARP and the phase center are different by several
centimeters, typically. For example, the NAD 83 ellipsoid height for the DE6429 NRME COOP
CORS L1 phase center is 163.027 m, whereas the ellipsoid height of the ARP is 162.951 m, a
difference of 7.6 cm. Surveyors clearly need to be very careful in choosing their control coordinates
and know what their post-processing software does with those coordinates. Some packages may
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assume that the vertical coordinate refers to some particular place, typically the ARP or the phase
center; others allow the user to specify to which place the control coordinates refer. Surveyors
should take care to pick coordinates that match the expectations of their software or they will
introduce systematic vertical errors by accounting for the phase center-ARP separation incorrectly.
Furthermore, some packages have antenna geometry databases to allow the software to compute the
distance from the ARP to the phase center. Surveyors should check the values in such a database
to verify they are correct by comparing with designs provided by manufacturers or by information
on the aforementioned NGS antenna calibration website.

Also, GNSS observation files often allow for marker offsets. Some CORS base station RINEX
observation files have offsets that reflect the phase center-ARP separation, typically a negative
number a few centimeters in magnitude. Surveyors will need to zero these offsets if their processing
software assumes the control coordinates refer to the ARP and computes the offsets automatically
via the antenna geometry database. If they are not zeroed, the software will account for the distance
from the phase center to the ARP twice, introducing a several-centimeter blunder into the vertical
control coordinate. Such a blunder can be extremely difficult to find if the processing package
does not give a complete account (report) of how the vertical coordinate was determined. The
NGS processing software, PAGES, does report all the offsets that go into determining the spatial
location of the phase center, so the surveyor knows whether all the control coordinates and offsets
are consistent.

Additionally, as CORS stations are increasingly being used in local surveys, it is likely that a
mixture of antenna types will occur in a single survey. Any azimuthal PCV inconsistencies among
the antennas will not cancel in the differencing processing unless the same inconsistency occurs for
all antennas. Therefore, it is important to orient all antennas in the survey to the North so that
any residual azimuthal effects are canceled. CORS antennas are already oriented to the North,
which means that surveyors need only be concerned about their own antennas.

Electromagnetic interference and signal attenuation

The radio signals currently broadcast by the GPS satellites are relatively low power, around 50
watts. Although GNSS signals occupy a protected frequency band, nearby sources of broadband
electromagnetic noise can overwhelm them (Johannessen 1997, Butsch 2002), thus causing decreased
signal to noise ratios, increased difficulty or prevention of GNSS signal acquisition, and loss of signal
tracking (Seeber 2003, p.320). Power transmission lines, television and radio stations, and radar
installations are possible examples of such noise sources. To help address this problem, the GPS
modernization program includes a third, higher-power frequency (L5) which is expected to reduce
this problem (Hatch, Jung, Enge & Pervan 2000). Unfortunately, new receivers will probably
have to be purchased when enough satellites have been placed in orbit to make using L5 practical
and to take advantage of its potential. In the mean time, surveyors should occupy sites that
are not directly below electromagnetic noise sources, if possible. Overhead vegetation that comes
between the receiver and the SVs can also attenuate or block the SV transmissions, causing the
same problems as with decreased signal to noise ratios (Spilker 1996, Meyer, Bean, Ferguson &
Naismith 2002).

4.4.5 Error Summary

Table tab:IV.1 provides a summary of error sources and recommended remedies.
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Table 4.1: A summary of GNSS error sources and their recommended remedy.

Error Remedy
Orbit errors and clock errors Use final precise ephemerides;

Double differencing of phase observations
eliminates orbit and clock errors

Ionospheric delay Use dual-frequency receivers;
Can be reduced on short baselines by
differencing phase observables

Tropospheric delay Modeled or determined in post processing;
Longer observation times yield better results;
Can be reduced on short baselines
by differencing phase observables

Multipath Avoid multipath-prone locations;
Use a ground plane or choke ring antenna

Phase center variation Use antenna calibration models;
Orient antennas to North;
Check antenna offsets and antenna geometry
databases to ensure consistency with control
coordinates

Electromagnetic noise L5 receivers;
Avoid problem sites if possible

4.5 NGS Guidelines for GPS Ellipsoid and Orthometric Heighting

NGS has guidelines and suggested practices that, if followed exactly, are intended to achieve ellip-
soid / orthometric height network accuracies of 5 cm (95 percent confidence level) and ellipsoid /
orthometric height local accuracies of 2 cm and 5 cm (95 percent) (Zilkoski et al. 1997, Zilkoski
et al. 2000). The local accuracy of a control point is defined as:

. . . a value expressed in cm that represents the uncertainty in the coordinates of the
control point relative to the coordinates of the other directly connected, adjacent control
points at the 95 percent confidence level. The reported local accuracy is an approximate
average of the individual local accuracy values between this control point and other
observed control points used to establish the coordinates of the control point (Zilkoski
et al. 1997).

The network accuracy of a control point is defined as:

”. . . a value expressed in cm that represents the uncertainty in the coordinates of the
control point with respect to the geodetic datum at the 95 percent confidence level. For
NSRS network accuracy classification, the datum is considered to be best supported
by NGS. By this definition, the local and network accuracy values at CORS sites are
considered to be infinitesimal, i.e., to approach zero. (ibid)

This section presents an overview of these guidelines and of currently available U.S. geoid models
and how local geoid modeling is used in practice.
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4.5.1 Three Rules, Four Requirements, Five Procedures

The National Geodetic Survey created a series of rules, requirements and procedures to derive
orthometric heights using GPS (Zilkoski et al. 1997, Zilkoski et al. 2000). We now review this
material.

Three Rules

Rule 1. Follow NGS’ guidelines to establish GPS-derived ellipsoid heights (Zilkoski et al. 1997)
when performing a GPS survey;

Rule 2. Use NGS’s latest National Geoid Model, i.e., GEOID03 (Roman et al. 2004), when com-
puting GPS-derived orthometric heights; and

Rule 3. Use the latest National Vertical Datum, i.e., NAVD 88 (Zilkoski et al. 1992), height values
to control the project’s adjusted heights.

We note that GEOID03 is a hybrid geoid model for the conterminous U.S. and, as such, has been
custom-crafted to fit properly with the NAVD 88 level surface (Milbert 1991, Milbert & Smith 1996b,
Roman et al. 2004, Smith & Milbert 1999, Smith & Roman 2000, Smith & Roman 2001, Smith 1998).
Inferior results would likely result from using a geoid model that had not been so fitted. There
are many studies on how to apply local geoid models for surveying purposes; for example see
(Amod & Merry 2002, Corchete, Chourak & Khattach 2005, Featherstone & Olliver 2001, Forsberg,
Strykowski, Iliffe, Ziebart, Cross, Tscherning, Cruddace, Finch, Bray & Stewart 2002, Fotopoulos
2005, Luo & Chen 2002, Pellinen 1962, Soycan & Soycan 2003, Tranes, Meyer & Massalski 2007).
Some of these are studies were across very limited areas (Soycan & Soycan 2003, Tranes et al. 2007)
in which the geoid could be adequately modeled with simple polynomial models. The others are
local improvements over global models for regions as large as Iberia (Corchete et al. 2005), Hong
Kong (Luo & Chen 2002, Luo, Ning, Chen & Yang 2005, Zhan-ji & Yong-qi 2001), the Caribbean
Sea (Smith & Small 1999), Taiwan (Hwang & Hsiao 2003), and the British Isles (Featherstone &
Olliver 2001, Forsberg et al. 2002, Iliffe, Griffiths & Message 2000, Iliffe, Ziebart, Cross, Forsberg,
Strykowski & Tscherning 2003), where a simple polynomial model will not suffice. These approaches
depend upon absolute and relative gravity measurements.

Although it can be shown that completely rigorous orthometric heighting also depends on such
data (Tenzer et al. 2005), collecting them is impractical for most surveyors. Fortunately, U.S.
surveyors need not resort to such efforts because GEOID03 has been shown to be accurate at the 2
cm (95 percent confidence) level on average for the continental U.S (Roman et al. 2004). Although
newer versions are planned to be released in the future, GEOID03 is sufficient for GPS orthometric
heighting at the 2 cm and 5 cm accuracy levels as put forth by NGS, thus typically eliminating the
need for U.S. surveyors to create their own gravimetric geoid models.

Four Requirements (Control)

Requirement 1. GPS-occupy stations with valid NAVD 88 orthometric heights; stations should
be evenly distributed throughout (the) project.

Requirement 2. For project areas less than 20 km on a side, surround project with valid NAVD
88 bench marks, i.e., minimum number of stations is four; one in each corner of the project.

Requirement 3. For project areas greater than 20 km on a side, keep distance between valid
GPS-occupied NAVD 88 bench marks to less than 20 km.
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Requirement 4. For projects located in mountainous regions, occupy valid bench marks at the
base and summit of mountains, even if distance is less than 20 km.

NGS guidelines repeatedly stress the need to tie to valid NAVD 88 bench marks, although
(unfortunately) the criteria for validity are not discussed. Obviously, bench marks without NAVD
88 heights are not valid. This disqualifies NGVD 29 heights or bench marks tied to tide gauges.
A valid bench mark is one that has been tied into NAVD 88 and has not been disturbed either by
natural and human forces in such a way as to render its published NAVD 88 height inconsistent
with the remainder of the network. Caution should be used in areas of ground subsidence or uplift,
such as along the U.S. Gulf Coast or in California, for example.

GNSS heighting can take advantage of four-dimensional markers, where they exist. The Na-
tional Geodetic Survey has conducted “GPS-on-bench-mark” field surveys as part of its height
modernization program, thereby establishing many four-dimensional markers: geodetic latitude,
longitude, ellipsoid height, and Helmert orthometric height. For example, according to the data
sheet for Y88 (PID LX3030) in Connecticut, Y88 is vertical First-Order, Class II; Horizontal Order
A and ellipsoid Fourth Order, Class I. Four-dimensional bench marks are very useful for GNSS
adjustment software packages because they eliminate the need to estimate any of the four coor-
dinates (usually either ellipsoid or orthometric height) with a model. Occupying bench marks at
the bases and summits of mountains helps overcome error sources in geoid models typically caused
by a lack of gravity measurements at such places (Featherstone & Alexander 1996, Allister &
Featherstone 2001, Dennis & Featherstone 2002, Featherstone & Kirby 2000, Goos, Featherstone,
Kirby & Holmes 2003, Kirby & Featherstone 2001, Zhang & Featherstone 2004).

Five Procedures

Procedure 1. Perform a 3-D minimum constraint least squares adjustment of the GPS survey
project, i.e., constrain one latitude, one longitude, and one orthometric height value.

Procedure 2. Using the results from the adjustment in procedure 1 above, detect and remove all
data outliers. Repeat procedures 1 and 2 until all outliers have been removed.

Procedure 3. Compute differences between the set of GPS-derived orthometric heights from the
minimum constraint adjustment (using the latest national geoid model, i.e., GEOID03) from
procedure 2 above and published NAVD 88 bench marks.

Procedure 4. Using the result from procedure 3 above, determine which bench marks have valid
NAVD 88 height values. This is the most important step in the process. Determining which
bench marks have valid heights is critical to computing accurate GPS-derived orthometric
heights.

Procedure 5. Using the results from procedure 4 above, perform a constrained adjustment fixing
one latitude and one longitude value and all valid NAVD 88 height values.

Correctness is ascertained by repeatability in GPS heighting.

4.6 Discussion and Summary

GNSS surveying is becoming more commonly used for vertical control. GNSS heighting can be
attractive from a cost perspective because it offers the possibility of reducing or eliminating the
need for leveling runs and trig-heighting, which are very costly. Although GNSS heighting is not a
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panacea, the prospect of establishing high-quality vertical control in a remote site without running
levels to distant bench marks is very attractive.

Unfortunately, traditional training in leveling does not adequately prepare a surveyor to perform
GNSS heighting because the two techniques are nearly completely different. For example, different
instruments are used for each technique; the concept of a leveling route does not exist in GNSS
heighting; they have different error budgets; they reference different vertical datums; and they are
even based on different conceptualizations of height itself.

This series presented concepts such as reference ellipsoids, vertical datums, mean sea level, level
surfaces and the geoid, gravity and potential, and orthometric vs. geometric vs. ellipsoid heights.
From these concepts come applications such as why some reference ellipsoids are suitable as vertical
datums while others are not; what is a GNSS receiver really doing when used for heights and how
to integrate its measurements with those of a spirit level, and what is an orthometric correction.
Finally, this last paper presented practical aspects of GNSS heighting based on suggested practices
given by the National Geodetic Survey in light of its height modernization program. This paper
considered network design and control, observation strategies, the role and application of geoid
models, and the integration of leveled heights with GNSS-determined heights.

Although there are many issues affecting GNSS-determined orthometric heights, we believe the
key points are these. GNSS heighting depends on using consistent control, control from a single,
modern datum such as NAVD 88. For example, mixing heights in NGVD 29 and those referenced to
a mean sea level station with NAVD 88 heights would violate this rule. Since orthometric heights
are derived from ellipsoid heights by subtracting the geoid height from them, the geoid model
must be referred to the same heighting system as the control. Currently, in the United States,
GEOID03 is the correct model to use, although surveys over very small areas can also benefit from
polynomial-based geoid models derived from GPS-on-bench-mark observations.

The primary error factor is the difficulty to measure and model wet zenith delay. In arid
regions the wet zenith delay is very small, and short occupations (even as short as 30 minutes)
have been used successfully. In humid regions, this is seldom true. It has also been shown by
several investigators that collecting meteorological measurements for the purpose of tropospheric
delay modeling is ineffectual. However, these measurements should be collected for use as evidence
regarding which baselines need to be re-observed. It has been shown by Marshall et al. (2001)
that ”Weather fronts may cause the GPS signal delay to vary by greater than 3 centimeters over a
1-hour period, potentially leading to ellipsoidal height errors exceeding 9 cm.” Therefore, weather
observations are useful not so much for tropospheric modeling as they are for detecting that a
weather front may have passed through unnoticed. The key for reducing tropospheric delay errors
to acceptable levels is to keep baselines very short, less than 10 km in length. By doing so the delay
at both ends is nearly the same, and it is subsequently removed by post-processing differencing.
The accuracy of GNSS heighting on long baselines is currently limited by wet zenith delay errors.

The importance of antenna modeling cannot be overstated, as well. Ellipsoid height errors as
much as 10 cm for certain antennas can be introduced simply by failing to include phase center
variation correction models in the processing. It is critical to check the database of the post-
processing software to ensure that the antenna geometry is entered correctly and that a PCV model
is used. Similarly, when using RINEX observations, make sure that the offsets that may come with
those data have correct signs for the conventions of your software and that they ultimately refer
to your control coordinates, which can be either ARP or phase center. Any mistakes here will
introduce a several-centimeter bias in all baselines with an endpoint at the receiver.
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Burša, M. (1995), Report of Special Commission SC3, Fundamental constants, The 21st General
Assembly of the International Association of Geodesy, Boulder, Colorado. 2-14 July.

65



66 BIBLIOGRAPHY
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