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Abstract—
Though IP multicast is resource ef£cient in delivering data to a group

of members simultaneously, it suffers from scalability problem with the
number of concurrently active multicast groups because it requires a
router to keep forwarding state for every multicast tree passing through
it. To solve this state scalability problem, we proposed a scheme, called
aggregated multicast. The key idea is that multiple groups are forced to
share a single delivery tree. In our earlier work, we introduced the ba-
sic concept of aggregated multicast and presented some initial results to
show that multicast state can be reduced. In this paper, we develop a more
quantitative assessment of the cost/bene£t trade-offs. We propose an al-
gorithm to assign multicast groups to delivery trees with controllable cost
and introduce metrics to measure multicast state and tree management
overhead for multicast schemes. We then compare aggregated multicast
with conventional multicast schemes, such as source speci£c tree scheme
and shared tree scheme. Our extensive simulations show that aggregated
multicast can achieve signi£cant routing state and tree management over-
head reduction while containing the expense of extra resources (band-
width waste and tunnelling overhead). We conclude that aggregated mul-
ticast is a very cost-effective and promising direction for scalable transit
domain multicast provisioning.

I. INTRODUCTION

IP Multicast has been a very hot area of research, devel-
opment and testing for more than one decade since Stephen
Deering established the IP multicast model in 1988 [10].
However, IP multicast is still far from being widely de-
ployed in the Internet. Among the issues which delay the
deployment, state scalability is one of the most critical
ones.

IP multicast utilizes a tree delivery structure on which
data packets are duplicated only at fork nodes and are for-
warded only once over each link. By doing so IP multi-
cast can scale well to support very large multicast groups.
However, a tree delivery structure requires all tree nodes
to maintain per-group (or even per-group/source) forward-
ing information, which increases linearly with the num-
ber of groups. Growing number of forwarding state entries
means more memory requirement and slower forwarding
process since every packet forwarding action involves an
address look-up. Thus, multicast scales well to the number
of members within a single multicast group, but it suffers
from scalability problems when the number of simultane-
ously active multicast groups is very large.

The forwarding-state scalability problem has prompted
some recent research in forwarding state reduction. Some
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architectures aim to completely eliminate multicast state at
routers [16, 7, 22] using application level multicast, which
pushes the complexity to the end-points. Some schemes
attempt to reduce forwarding state at non-branched routers
[26, 24, 8], while some other schemes try to achieve state
reduction by forwarding-state aggregation [23, 25]. Thaler
and Handley analyze the aggregatability of forwarding
state in [25] using an input/output £lter model. Radoslavov
et al. propose algorithms to aggregate forwarding state and
study the bandwidth-memory tradeoff with simulations in
[23]. However, this state aggregation technique attempts
to aggregate routing state after the distribution trees have
been established, and it tends to change the state format
maintained in routers, which is generally not deserved by
many service providers [9]. Furthermore, the state aggre-
gatability of this technique heavily depends on multicast
address allocation.

To improve multicast state scalability, we proposed a
novel scheme to reduce multicast state, which we call
aggregated multicast. In this scheme, multiple multicast
groups are forced to share one distribution tree, which we
call an aggregated tree. This way, the number of trees in
the network may be signi£cantly reduced. Consequently,
forwarding state is also reduced: core routers only need to
keep state per aggregated tree instead of per group. The
trade-off is that this approach may waste extra bandwidth
to deliver multicast data to non-group-member nodes. In
our earlier work [14], we introduced the basic concept of
aggregated multicast, and presented some initial results to
show that multicast state can be reduced through inter-
group tree sharing. However, a thorough performance
evaluation of aggregated multicast is needed: what level of
the gain does aggregated multicast offer over conventional
multicast schemes? In this paper, we propose an algorithm
to assign multicast groups to delivery trees with control-
lable cost and introduce metrics to measure multicast state
and tree management overhead for multicast schemes. We
then compare aggregated multicast with conventional mul-
ticast schemes, such as source speci£c tree scheme and
shared tree scheme. Our extensive simulations show that
aggregated multicast can achieve signi£cant state and tree
management overhead reduction while at reasonable ex-
pense (bandwidth waste and tunnelling overhead).

The rest of this paper is organized as follows. Section II
gives some background on IP multicast and reviews some



related work. Section III introduces a classi£cation of mul-
ticast schemes. Section II reviews the concept of aggre-
gated multicast and presents an algorithm for group-tree
matching. Section V then discusses the implementation
issues for different multicast schemes and de£nes metrics
to measure multicast state and tree management overhead,
and Section VI provides an extensive simulation study of
different multicast schemes. Finally Section VII summa-
rizes the contributions of our work.

II. BACKGROUND AND RELATED WORK

A. Routing Architecture of Internet Multicast

In the current IP multicast architecture, a host joins
a multicast group by communicating with its designated
router via Internet Group Membership Protocol (IGMP
[6]) (by sending a membership report or answering a query
from the router). IP multicast utilizes a tree structure to de-
liver multicast packets for a group. A tree consists of desig-
nated routers which have group member(s) in their subnets
and other intermediate routers which help transport mul-
ticast traf£c. Multicast routing protocols determine how a
multicast tree is formed. In this paper, a router in the deliv-
ery tree is called an in-tree router, and a designated router
which has group participant host(s) in its subnet is called a
(group) member router, and we are only concerned with
multicast communication at the router level.

To determine how to forward multicast packets received,
a router maintains forwarding-state information for groups
in which it is an in-tree router, though it may not be
a member router. Depending on the routing protocol,
forwarding-state information may have entries per group
or per group/source. Multicast routing protocols determine
how forwarding state is obtained and maintained. In MO-
SPF [20], routers within a domain exchange group mem-
bership information with each other. Each router computes
a source-based multicast tree from which it obtains for-
warding state that consists of (group/source, expected in-
interface, out-interface(s)) information. DVMRP [21] or
PIM-DM [11] builds per-source tree with a “¤ood-and-
prune” mechanism: a router ¤oods data to all outgoing
links, unless “prune” state exists denoting downstream
hosts are not interested. In CBT [4] or PIM-SM [12], a
group member sends an explicit join request towards a core
router or a rendezvous point (RP). The request is forwarded
and processed by intermediate routers and the correspond-
ing forwarding state is installed at each router.

The Internet consists of numerous Autonomous Systems
(AS) or domains. Domains may be connected as service
provider/customers in a hierarchical manner or connected
as peering neighbors, or both. Normally a domain is con-
trolled by a single entity and can run an intra-domain mul-
ticast routing protocol of its choice. An inter-domain mul-
ticast routing protocol is deployed at border routers of a
domain to construct multicast trees connecting to other do-

mains. A border router capable of multicast communicates
with its peer(s) in other domain(s) via inter-domain mul-
ticast protocols and routers in its own via intra-domain
protocols, and forward multicast packets across the do-
main boundary. Currently there are two prominent inter-
domain multicast protocol suits: MBGP/PIM-SM/MSDP
and MASC/BGMP [2, 19]. MBGP/PIM-SM/MSDP is
a short-term solution, where MBGP to advertise multi-
cast routes among domains, PIM-SM to build trees for
members in different domains, and MSDP to connect RPs
across domains. In the long-term solution MASC/BGMP,
BGMP builds bi-directional shared trees across domains
with a single root, and MASC is employed to solve the
problem of multicast address collisions.

B. Other Related Work

Besides state aggregation approach [23, 25], some other
work also attempts to reduce or eliminate multicast state.
Xcast [5] proposes to code a set of destinations’ addresses
in a multicast packet so a router doesn’t need to maintain
state information for the group. It aims to be an alternative
for IP multicast for very small groups or for Inter-domain
multicast. It doesn’t require a router to maintain multicast
state but requires more processing of data packets at each
router.

Alternatively, in Yoid [16] and End-System Multicast
[7], a self-organizing tree (and/or mesh) among group
members is constructed to provide multi-point communi-
cations among them without network-layer multicast sup-
port. In this approach, native multicast may only be used
within a limited scope [16] (e.g. at LAN level), while uni-
cast is used pervasively among members. Because only
members are involved in replicating and forwarding mul-
ticast packets, it is transparent to routers. Yoid and End-
System Multicast might be good alternatives for small-
scale multicast applications; however, it is dif£cult for
them to scale up to support large-scale multicast applica-
tions like Internet TV that can have millions of group mem-
bers since these protocols need to discover and maintain
all or most group members. ALMI [22] is another appli-
cation level multicast infrastructure. It uses a centralized
algorithm to compute a minimum spanning tree rooted at a
designated controller, and then disseminate routing tables
to all members. This centralized nature limits the size of
groups, as makes ALMI only suitable for applications with
very small number of members.

Another type of approach attempts to eliminate multi-
cast forwarding state at non-branching routers (i.e. routers
that forward multicast packets received for a group to only
one out-going interface) [26, 24, 8]. Tian and Neufeld
[26] propose to dynamically establish tunnels over non-
branching links (thus non-branching routers in between do
not need state for that group). REUNITE [24] by Sto-
ica et al. essentially proposes an alternative to IP mul-
ticast, in which a multicast group is identi£ed by a tu-
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ple of root node IP address and a port number. Multicast
state is installed at branching nodes only and packet for-
warding is based on unicast in between. Multicast state
is set up through explicit JOIN messages from members
(grafting new members to some branching routers or root
when necessary) and TREE messages from root (creating
routes from root to members when necessary). [8] mod-
i£es the REUNITE approach by adopting source-speci£c
channel abstraction to simplify multicast address alloca-
tion [18]. And by introducing FUSION messages (used
to merge routes when necessary), it improves the stability
of tree structures caused by member dynamics and pro-
vides potential lower cost trees than REUNITE. It should
be noted that all these no-branching-router dedicated ap-
proaches have a basic assumption: there are a large number
of sparse groups in networks.

III. A CLASSIFICATION OF MULTICAST SCHEMES

According to the type of delivery tree, we classify the
existing intra-domain multicast routing protocols into two
categories (In this paper, we only consider intra-domain
multicasting, since aggregated multicast is an approach
mainly designed for single domains): in the £rst category,
protocols construct source speci£c tree, and in the sec-
ond category, protocols utilize shared tree. For the con-
venience of discussion, we call the former category as
source speci£c tree scheme, and the latter one as shared
tree scheme. According to this classi£cation, we can say,
DVMRP [21], PIM-DM [11], and MOSPF [20] belong to
source speci£c tree scheme category, while CBT [3], PIM-
SM [13], and BIDIR-PIM [17] are basically shared tree
schemes (of course, PIM-SM can also activate source spe-
ci£c tree when needed).

Source speci£c tree schemes construct a separate deliv-
ery tree for each source. Namely, each source of a group
utilizes its own tree to deliver data to the receivers in the
group. Shared tree schemes instead construct trees based
on per-group and all the sources of a group use the same
tree to deliver data to the receivers. In other words, mul-
tiple sources of the same group share a single delivery
tree. Shared tree can be unidirectional or bi-directional.
PIM-SM is a unidirectional shared tree scheme. CBT and
BIDIR-PIM are bi-directional shared tree schemes. Fig. 1
shows the different types of trees for the same group G
with sources (S1, S2) and receivers (R1, R2). For source
speci£c tree schemes, two trees are set up for group G.
For the unidirectional shared tree scheme, one tree is set
up. Each source needs to unicast packets to the rendezvous
point (RP) or build source speci£c state on all nodes along
the path between the source and the RP. For the last type of
schemes, only one bi-directional tree will work. A source
can unicast packet to the nearest on-tree node instead of
RP. And each on-tree node can deliver packets along the
bi-directional tree.

Compared with conventional multicast schemes, ag-

Domain B

Domain A

Customer networks, domain D

E1

X1

D1
Y1

C1

B1

A4

A1 A3

A2

Ab

Aa

Domain E

Domain Y

Domain CDomain X

Tunnel

Fig. 2. A cross-domain multicast tree with nodes: D1, A1, Aa, Ab, A2,
B1, A3, C1, covering group G0 (D1, B1, C1).

gregated multicast raises tree-sharing to an even higher
level—inter-group tree sharing, where multiple multicast
groups are forced to share one aggregated tree. An aggre-
gated tree can be either a source speci£c tree or a shared
tree, while a shared tree can be either unidirectional or bi-
directional. We will review the basic concept of aggregated
multicast and discuss some related issues in the following
section.

IV. AGGREGATED MULTICAST

A. Concept of Aggregated Multicast

Aggregated multicast [14] is proposed to reduce multi-
cast state, and it is targeted to intra-domain multicast pro-
visioning. The key idea is that, instead of constructing a
tree for each individual multicast group in the core net-
work (backbone), multiple multicast groups are forced to
share a single delivery tree.

Fig. 2 illustrates a hierarchical inter-domain network
peering. Domain A is a regional or national ISP’s back-
bone network, and domain D, X, and Y are customer net-
works of domain A at a certain location (say, Los Angeles),
and domain E is a customer network of domain A in an-
other location (say, Seattle). Domain B and C can be other
customer networks (say, in Boston) or some other ISP’s
networks that peer with A. A multicast session originates
at domain D and has members in domain B and C. Routers
D1, A1, A2, A3, B1 and C1 form the multicast tree at the
inter-domain level while A1, A2, A3, Aa and Ab form an
intra-domain sub-tree within domain A (there may be other
routers involved in domain B and C). Consider a second
multicast session that originates at domain D and also has
members in domain B and C. For this session, a sub-tree
with exactly the same set of nodes will be established to
carry its traf£c within domain A. Now if there is a third
multicast session that originates at domain X and it also
has members in domain B and C, then router X1 instead of
D1 will be involved, but the sub-tree within domain A still
involves the same set of nodes: A1, A2, A3, Aa, and Ab.

To facilitate our discussions, we make the following def-
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Fig. 1. Different types of trees for the same group G with sources (S1, S2) and receivers (R1, R2).

initions. For a group G, we call terminal nodes the nodes
where traf£c enters or leaves a domain, A1, A2, and A3 in
our example. We call transit nodes the tree nodes that are
internal to the domain, such as Aa and Ab in our example.

In conventional IP multicast, all the nodes in the above
example that are involved within domain A must main-
tain separate state for each of the three groups individu-
ally though their multicast trees are actually of the same
“shape”. Alternatively, in the aggregated multicast, we can
setup a pre-de£ned tree (or establish a tree on demand)
that covers nodes A1, A2 and A3 using a single multicast
group address (within domain A). This tree is called an ag-
gregated tree and it is shared by more than one multicast
groups (three groups in the above example). We say an ag-
gregated tree T covers a group G if all terminal nodes for
G are member nodes of T . Data from a speci£c group is
encapsulated at the incoming terminal node using the ad-
dress of the aggregated tree. It is then distributed over the
aggregated tree and decapsulated at exiting terminal nodes
to be further delivered to neighboring networks. This way,
transit router Aa and Ab only need to maintain a single for-
warding entry for the aggregated tree regardless how many
groups are sharing it.

Thus, aggregated multicast can reduce the required mul-
ticast state. Transit nodes don’t need to maintain state for
individual groups; instead, they only maintain forwarding
state for a smaller number of aggregated trees. The man-
agement overhead for the distribution trees is also reduced.
First, there are fewer trees that exchange refresh messages.
Second, tree maintenance can be a much less frequent pro-
cess than in conventional multicast, since an aggregated

tree has a longer life span. This is an unique advantage
compared with other state reduction schemes, such as [26],
[23], [25], [24], and [8], etc.

B. Group-Tree Matching in Aggregated Multicast

Aggregated multicast achieves state reduction through
inter-group tree sharing—multiple groups share a single
aggregated tree. When a group is started, an aggregated
tree should be assigned to the group following some rules.
If a dense set of aggregated trees is pre-de£ned, things will
be easy: just choose the tree with minimum cost which can
cover the group. While in the dynamic case (aggregated
tree are established on demand), a more elaborate group-
tree matching algorithm is needed.

When we try to match a group G to an aggregated tree
T , we have four cases:
1. T can cover G and all the tree leaves are terminal nodes
for G, then this match is called perfect match for G;
2. T can cover G but some of the tree leaves are not ter-
minal nodes for G, then this match is a pure-leaky match
(for G);
3. T can not cover G and all the tree leaves are terminal
nodes for G, then this match is called a pure-incomplete
match;
4. T can not cover G and some of the tree leaves are not
terminal nodes for G, we name this match as incomplete
leaky match.
Namely, we denote the case when some of the tree leaves
are not terminal nodes for the group G as leaky match
and the case when the tree can not cover the group G as
incomplete match. Clearly, leaky match includes case 2
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and 4, and incomplete match includes case 3 and 4.
To give examples, the aggregated tree T0 with nodes

(A1, A2, A3, Aa, Ab) in Fig. 2 is a perfect match for
our early multicast group G0 which has members (D1, B1,
C1). However, if the above aggregated tree T0 is also used
for a group G1 which only involves member nodes (D1,
B1), then it is a pure-leaky match since traf£c for G1 will
be delivered to node A3 (and will be discarded there since
A3 does not have state for that group). Obviously, the ag-
gregated tree T0 is an pure-incomplete match for a group
G2 which has members (D1, B1, C1, E1) and an incom-
plete leaky match for a group G3 with members (D1, B1,
E1).

We can see that leaky match helps to improve inter-
group tree sharing. A disadvantage of leaky match is that
some bandwidth is wasted to deliver data to nodes that are
not members for the group. Leaky match may be unavoid-
able since usually it is not possible to establish aggregated
trees for all possible group combinations. In the incom-
plete match case, we have two ways to get a tree for the
group. One way is to construct a bigger tree by moving the
entire group to a new larger aggregated tree, or, to extend
the current aggregated tree to a bigger tree. Extending a
tree might involve a lot of overhead, because all the groups
which use the extended aggregated tree need to make the
corresponding adjustment. An alternative way is to use
“tunnelling”. Here we give an example. Suppose member
E1 in domain E decides to join group G0 in Fig. 2. Instead
of constructing a bigger tree, an extension “tunnel” can be
established between edge router A4 (connecting domains
A and E) and edge router A1. This solution combines fea-
tures of multicast inter-group tree sharing and tunnelling; it
still preserves core router scalability properties by pushing
complexity to edge routers. It can be easily concluded that,
if we employ tunnelling instead of tree extension, then a
pure-incomplete match only involves tunnelling, while an
incomplete leaky match will activate tunnelling and will
also waste resources because of leaky matching.

C. A Group-Tree Matching Algorithm

Here we propose an intuitive but effective group-tree
matching algorithm which is used in our simulations. To
avoid the overhead caused by tree extension, this algorithm
uses tunnelling for incomplete match. First, we introduce
some notations and de£nitions.

C.1 Overhead De£nition

A network is modelled as an undirected graph G(V,E).
Each edge (i, j) is assigned a positive cost cij = cji, which
represents the cost to transport a unit of data from node i
to node j (or from j to i). Given a multicast tree T , total
cost to distribute a unit of data over that tree is

C(T ) =
∑

(i,j)∈T

cij . (1)

If every link is assumed to have equal cost 1, tree cost is
simply C(T ) = |T | − 1, where |T | denotes the number
of nodes in T . This assumption holds in this paper. Let
MTS (Multicast Tree Set) denote the current set of multi-
cast trees established in the network. A “native” multicast
tree (constructed by some conventional multicast routing
algorithm, denoted by A) for a multicast group G is de-
noted by TA

G .
For any aggregated tree T , as mentioned in Section IV-

B, it is possible that T does not have a perfect match with
group G, which means that the match is leaky match or in-
complete match. In leaky match case, some of the leaf
nodes of T are not the terminal nodes for G, and then
packets reach some destinations that are not interested in
receiving them. Thus, there is bandwidth overhead in ag-
gregated multicast. We assume each multicast group has
the same bandwidth requirement, then it is easy to get that
the percentage bandwidth overhead (denoted by δL(G,T ))
is actually equal to the percentage link cost overhead:

δL(G,T ) =
C(T )− C(TA

G ))

C(TA
G )

, (2)

Obviously, δL(G,T ) is 0 for perfect match.
In incomplete match case, T can not cover all the mem-

bers of group G, and some tunnels need to be set up. Data
packets of G exit from the leaf nodes of T , and tunnel
to the corresponding terminal nodes of G. Clearly, there
is tunnelling overhead caused by unicasting data packets
from tree leaf nodes to group terminal nodes. Each tun-
nel’s cost can be measured by the link cost along the tun-
nel. Assume there are kG tunnels for group G, and each
tunnel is denoted by T t

G,i, where 1 ≤ i ≤ kG, then we de-
£ne the percentage tunnelling overhead for this incomplete
match as

δI(G,T ) =

∑kG

i=1 C(T t
G,i)

C(TA
G )

. (3)

It is easy to tell that δI(G,T ) is 0 for perfect match.

C.2 Algorithm Description

Our group-tree matching algorithm is based on band-
width overhead and tunnelling overhead. Let lt be the
given bandwidth overhead threshold for leaky match, and
tt be the given tunnelling overhead threshold for incom-
plete match. When a new group is started,
1. compute a “native” multicast tree TA

G for G based on
the multicast group membership;
2. for each tree T in MTS, compute δL(G,T ) and
δI(G,T ); if δL(G,T ) < lt and δI(G,T ) < tt then T
is considered to be a candidate aggregated tree for G;
3. among all candidates, choose the one such that
f(δL(G,T ), δI(G,T )) is minimum and denote it as Tm,
then Tm is used to deliver data for G; if Tm can not cover
G, the corresponding tunnels will be set up;
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4. if no candidate found in step 2, TA
G is used for G and is

added to MTS.
In step 3, f(δL(G,T ), δI(G,T )) is a function to decide
how to choose the £nal tree from a set of candidates. In
our simulations,

f(δL(G,T ), δI(G,T )) = δL(G,T ) + δI(G,T ). (4)

Actually, this function can be chosen as needed in the real
scenarios. For example, we can give more weight to band-
width overhead if bandwidth is our main concern.

It should be noted that, in the above group-tree match-
ing algorithm, we assume that the bandwidth of a link is
ample, that is, the links of a tree are never saturated by
a new group sharing that tree. The reason is that we do
not want the limited network capacity to bound the num-
ber of allowed concurrent groups, because our focus here
is to evaluate the trade-off between state aggregation and
bandwidth overhead and tunnelling cost rather than £nding
optimal tree layouts based on capacity constraints. More-
over, the capacity constrained tree optimization is not criti-
cal for two reasons: (a) the bandwidth of the links in a net-
work backbone has been steadily increasing, e.g. AT&T
backbone has adopted OC-192; (b) consistent with the
large supply of inexpensive backbone bandwidth, one can
assume that the bandwidth management scheme associ-
ated with the aggregated multicast will allocate/deallocate
bandwidth to an aggregated tree “on demand”, based on
traf£c measurements. This is akin to the concept of “mea-
surement based” call acceptance control and of “soft” state
tree maintenance (that is, no explicit bandwidth dealloca-
tion is required when members leave the tree).

V. EXPERIMENT METHODOLOGY

In aggregated multicast, sharing a multicast tree among
multiple groups may signi£cantly reduce the state at net-
work core routers and correspondingly the tree manage-
ment overhead. However, what level of gain can aggre-
gated multicast get over other multicast schemes? In this
section, we will discuss some implementation issues for
different multicast schemes in our simulations, and de£ne
metrics to measure multicast state and tree management
overhead. Then in Section VI, we will compare aggre-
gated multicast with other multicast schemes through sim-
ulations.

A. Implementation of Multicast Schemes in SENSE

We conduct our simulations in SENSE (Simulation
Environment for Network System Evolution) [1], which
is a network simulator developed at the network research
laboratory at UCLA to perform wired network simulation
experiments.

In SENSE, we can support the source speci£c tree
scheme, the shared tree scheme (with unidirectional tree
and bi-directional tree), and the aggregated multicast

scheme (with source speci£c tree, unidirectional shared
tree and bi-directional shared tree). It should be noted that,
the multicast schemes we discuss here are not speci£c mul-
ticast routing protocols, since the goal of this work is to
study the gain of aggregated multicast over conventional
multicast schemes. The comparison is between schemes,
not protocols.

We implement each multicast scheme with a central-
ized method. For each scheme, there is a centralized pro-
cessing entity (called multicast controller), which has the
knowledge of network topology and multicast group mem-
bership. The multicast controller is responsible for con-
structing the multicast tree according to different multi-
cast schemes and then distributing the routing tables to
the corresponding nodes. In the implementation, we did
not model the membership acquisition and management
procedures which depend on the speci£c multicast rout-
ing protocol. This omission reduces the bias and improves
the fairness in comparing different multicast schemes. The
multicast controller will read group and member dynamics
from a pre-generated (or generated on-the-¤y) trace £le.

For shared tree scheme (either unidirectional or bi-
directional) and aggregated multicast scheme with shared
tree (unidirectional or bi-directional), a core node or a ren-
dezvous point (RP) is needed when a tree is constructed.
To achieve better load balancing, the core node should be
chosen carefully. In our implementation, for all multicast
schemes using shared trees, a set of possible core routers
are pre-con£gured. Then, when a group is initialized, the
core is chosen so as to minimize the cost of the tree.

In an aggregated multicast scheme, the multicast con-
troller also needs to manage aggregated trees and mul-
ticast groups and manipulate group-tree matching algo-
rithm. The multicast controller has the same responsibil-
ity as the tree manager (mentioned in [14]) in aggregated
multicast. It collects group join messages and assigns ag-
gregated trees to groups. Once it determines which aggre-
gated tree to use for a group, the corresponding multicast
state will be installed at the terminal nodes involved.

B. Performance Metrics

The main purpose of tree-sharing is to reduce multicast
state and tree maintenance overhead. So, multicast state
and tree management overhead measures are of most con-
cern here. In our experiments, we introduce the following
metrics.

Number of multicast trees (or “number of trees” for
shorthand) is de£ned as |MTS|, where MTS denotes the
current set of multicast trees established in the networks.
This metric is a direct measurement of the multicast tree
maintenance overhead. The more multicast trees, the more
memory required and the more processing overhead in-
volved (though the tree maintenance overhead depends on
the speci£c multicast routing protocols).
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Forwarding state in transit nodes (or “transit state” for
shorthand). Without losing generality, we assume a router
needs one state entry per multicast address in its forward-
ing table. As we de£ned in Section IV-A, in a multicast
tree, there are transit nodes and terminal nodes. We note
that forwarding state in terminal nodes can not be reduced
in any multicast scheme. Even in aggregated multicast, the
terminal nodes need to maintain the state information for
individual groups. So, to assess the state reduction, we
measure the forwarding state in transit nodes only.

VI. SIMULATIONS

In this section, we compare aggregated multicast with
conventional multicast schemes through extensive simula-
tions, and quantitatively evaluate the gain of aggregated
multicast.

A. Multicast Trace Generation

A.1 Multicast Group Models

Given the lack of experimental large scale multicast
traces, we have chosen to develop membership models that
exhibit locality and group correlation preferences. In our
simulation, we use the group model previously developed
in [15]: the random node-weighted model. This model
re¤ects the fact that not all nodes in the network are equiv-
alent. For example, consider two nodes in MCI’s back-
bone network: one is in Los Angeles and the other one is
in Santa Barbara. It is very likely that the LA node has
much more multicast sessions going through it than that of
the Santa Barbara node given that MCI has a much larger
customer base in LA. This feature is very signi£cant in
backbone networks.

For completeness, we provide here a summary descrip-
tion of the node-weighted model.

The random node-weighted model. In this model,
each node is assigned a weight representing the probability
for that node to be in a group. And it statistically controls
the number of groups a node will participate in based on
its weight: for two nodes i and j with weight w(i) and
w(j) (0 < w(i), w(j) ≤ 1), let N(i) be the number of
groups that have i as a member and N(j) be the number
of groups that have j as a member, then it is easy to prove
that, in average, N(i)

N(j) = w(i)
w(j) . Assuming the number of

nodes in the network is N and nodes are numbered from 1
to N . For each node i, 1 ≤ i ≤ N , it is assigned a weight
w(i), 0 ≤ w(i) ≤ 1. Then a group can be generated as the
following procedure:

for i = 1 to N do
generate a random number uniformly between 0 and
1, let it be p
if p < w(i) then

add i as a group member
end if

end for

Following this model, the average size of multicast groups
is N

∑n

i=1 w(i).

A.2 Multicast Membership Dynamics

Generally, there are two methods to control multicast
group member dynamics. The £rst one is to create new
members (sources and receivers) for a group according to
some pre-de£ned statistics (arrival rate and member life
time etc.), then decide the termination of a group based
on the distribution of the group size. This is actually a
member-driven method. As to the other one, we call it as a
group-driven method, that is, group characteristics (group
size, group arrival rate, and group life time) are de£ned £rst
and then members are generated according to group infor-
mation. In our experiments, we use the second method,
in which the group statistics are controlled £rst (using our
node-weighted model). In fact, the second method looks
more reasonable for many real life multicast applications
(such as video conference, tele-education, etc.). In any
event, the speci£c method used to control group member
dynamics is not expected to affect our simulation results.

In our experiments, given a group life period (t1, t2),
and the group member set g, where |g| = n, for any
node mi ∈ g, 1 ≤ i ≤ n, its join time and leave
time are denoted by tjoin(mi) and tleave(mi) respec-
tively. Then the member dynamics are controlled as fol-
lows:

for i = 1 to n do
mi ∈ g
tjoin(mi)=get rand(t1, t2); (get a random time point
in (t1, t2))
tleave(mi)=get rand(tjoin(mi), t2); (get a random
time point in(tjoin(mi), t2))

end for
It is not dif£cult to know that the average life time of each
member is |t2 − t1|/4.

B. Results and Analysis

We now present results from simulation experiments
using a real network topology, vBNS IP backbone (see
Fig. 3).

In vBNS backbone, there are 43 nodes, among which
FORE ASX-1000 nodes (16 of them) are assumed to be
core routers only (i.e. they will not be terminal nodes for
any multicast group) and are assigned weight 0. Any other
node is assigned a weight 0.05 to 0.8 according to link
bandwidth of the original backbone router – the rationale
is that, the more the bandwidth on the outgoing (and in-
coming) links of a node, the more the number of multi-
cast groups it may participate in. Thus, we assign weight
0.8 to nodes with OC-12C links (OC-12C-linked nodes for
shorthand), 0.2 to nodes with OC-3C links (OC-3C-linked
nodes), and 0.05 to nodes with DS-3 links (DS-3-linked
nodes).
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Fig. 3. vBNS backbone network map.

In simulation experiments, multicast session requests ar-
rive as a Poisson process with arrival rate λ. Sessions’ life
time has an exponential distribution with average µ−1. At
steady state, the average number of sessions is N̄ = λ/µ.
During the life time of each multicast session, group mem-
bers are generated dynamically according to the group-
driven method introduced earlier. Group membership is
controlled using the node-weighted model. Performance
data is collected at certain time points (e.g. at T = 10µ),
when steady state is reached, as “snapshot”.

First, we design experiments to compare unidirectional
shared tree scheme (UST scheme for shorthand) vs ag-
gregated multicast scheme with unidirectional shared tree
(AM w/UST scheme for short hand). In this set of exper-
iments, each member of a group can be a source and a re-
ceiver. Once a multicast session starts up, its core node (or
RP) is randomly chosen from the 16 core routers in the net-
work. For aggregated multicast scheme with unidirectional
shared tree, the algorithm speci£ed in Section IV-C is used
to match a group to a tree. When members join or leave
a group, its aggregated tree will be adjusted according to
the matching algorithm. Correspondingly, the routing al-
gorithm A is PIM-SM like routing algorithm which uses
unidirectional shared tree.

In our £rst experiment, for aggregated multicast, we
only allow pure-leaky match, which means that the tun-
nelling overhead threshold (represented as tth) is 0. We
vary the bandwidth overhead threshold (represented as lth)
from 0 to 0.3. For UST scheme and AM w/UST scheme,
with different bandwidth threshold, we run simulations to
show how the aggregation of aggregated multicast “scales”
with the average number of concurrent groups (labelled by
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Fig. 4. Simulation results for UST and AM w/UST when only pure-leaky
match (tth = 0) is allowed.

computing λ/µ) . The results are plotted in Fig. 4. As
to the “number of trees” (see Fig. 4(a)), clearly, for UST
scheme, it is almost a linear function of the number of
groups. For AM w/UST scheme, as the number of groups
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becomes bigger, the number of trees also increases, but
the increase is much less than UST (even for perfect match
(lth = 0), the number of trees is only 1150 instead of 2500
for UST when there are 2500 groups). Also this “increase”
decreases as there are more groups, which means that as
more groups are pumped into the network, more groups
can share an aggregated tree. Fig. 4(b) shows us the change
of “transit state” with the number of concurrent groups.
It has similar trend to metric “number of trees”. “Transit
state” is reduced from 12800 to 7400 (above 40% reduc-
tion) even for perfect match when there are 2500 concur-
rent groups. A general observation is that, when bandwidth
overhead threshold is increased, that is, more bandwidth
is wasted, “number of trees” decreases and “transit state”
falls, which means more aggregation. Therefore, there is
a trade-off between state and tree management overhead
reduction and bandwidth waste.

In our second experiment, for aggregated multicast, we
only allow pure-incomplete match, which means that the
bandwidth overhead threshold (represented as lth) is 0. We
vary the tunnelling overhead threshold (represented as tth)
from 0 to 0.3 and want to look at the effect of tunnelling
overhead threshold on the aggregation. Fig. 5 plots the re-
sults, which give us curves similar to Fig. 4. However, we
can see that tunnelling overhead threshold affects the ag-
gregation signi£cantly: when tth = 0.3, and group num-
ber is 2500, almost 5 groups share one tree, and “transit
state” is reduced about 70 percentage. When the number
of groups increases, we can expect even much more ag-
gregation. The stronger in¤uence of tunnelling overhead
threshold on aggregation is not a surprise: the higher the
tunnelling overhead threshold is, the more chance for a
group to use a small tree for data delivery, the more likely
for more groups to share a single aggregated tree.

Our third experiment considers both bandwidth over-
head and tunnelling overhead. And the simulation results
are shown in Fig. 6. All the results tell what we expect:
more aggregation achieved when we sacri£ce more re-
sources (that is, when we introduce more bandwidth waste
and tunnelling overhead).

We have shown the results for comparing unidirectional
shared tree scheme (UST) vs aggregated multicast scheme
with unidirectional shared tree (AM w/UST). Similar re-
sults are obtained for source speci£c tree scheme (SST) vs
aggregated multicast scheme with source speci£c tree (AM
w/SST) and bi-directional shared tree scheme (BST) vs
aggregated multicast with bi-directional shared tree (AM
w/BST). Some representative results are shown below.

In the set of experiments for BST vs AM w/BST, we
also assume all the group members can be sources and re-
ceivers. In bi-directional shared tree scheme, the core node
(or RP) only helps to construct the delivery tree, no uni-
casting traf£c from sources to the core node, as is different
from unidirectional shared tree scheme. Fig. 7 plots the re-
sults for the same simulation scenarios as Fig. 6 except that
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Fig. 5. Simulation results for UST and AM w/UST when only pure-
incomplete match (lth = 0) is allowed.

the multicast schemes are different. We can see that the
metric of “number of trees” in Fig. 7 is the same as that in
Fig. 6. This is because the group-tree mapping procedures
in AM w/UST and AM w/BST are exactly the same. How-
ever, “transit state” is different in the two £gures, since, in
bi-directional shared tree scheme, the core node is a transit
node and does not keep group speci£c state. Thus, more
state reduction is achieved (when lth = 0.3 and tth = 0.3,
the state reduction is around 75%).

In the set of experiments for SST vs AM w/SST, we
assume there is only one source for each group. And the
source is randomly chosen from group members. In AM
w/SST, only the two groups with the same source can share
an aggregated tree. Obviously, this will reduce the state
aggregatability. Fig. 8 shows the results for SST vs AM
w/SST.

From our simulation results and analysis, the bene£ts of
aggregated multicast are mainly in the following two ar-
eas: (1) tree management overhead reduction by lowering
the number of trees needed to be maintained in the net-
work; (2) state reduction at transit nodes. The price to pay
is bandwidth waste and tunnelling cost. The above simu-
lation results con£rm our claim while demonstrate the fol-
lowing trends: (1) if we are willing to sacri£ce more band-
width or tunnelling cost (by lifting the bandwidth overhead
threshold and tunnelling overhead threshold correspond-
ingly), more or better aggregation is achieved; by “more
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Fig. 6. Simulation results for UST and AM w/UST when both leaky
match and incomplete match are allowed.

aggregation” we mean more groups can share an aggre-
gated tree (in average) and correspondingly more state re-
duction; (2) better aggregation is achievable as the number
of concurrent groups increases. The later point is espe-
cially important since one basic goal of aggregated mul-
ticast is scalability in the number of concurrent groups.
Furthermore, aggregated multicast can be applied on top
of any conventional multicast scheme. The aggregation
ability depends on the underlying multicast scheme. AM
w/UST and AM w/BST gives similar aggregation, but AM
w/UST involves more unicasting overhead (from source
to RP). Compared with AM w/UST and AM w/BST, AM
w/SST generally yields less aggregation. However, as we
know, source speci£c tree scheme (SST) is much more
simpler than shared tree scheme (UST and BST). For ex-
ample, in SST, there is no need to maintain code nodes or
RPs.

VII. CONCLUSIONS AND FUTURE WORKS

To address the problem of multicast state scalability, we
proposed a novel scheme, aggregated multicast. The key
idea of aggregated multicast is to force groups into shar-
ing a single delivery tree. In this paper, in order to give a
thorough performance evaluation of aggregated multicast,
we designed a group-tree dynamic matching algorithm us-
ing tunnelling and introduced metrics to measure mul-
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Fig. 7. Simulation results for BST and AM w/BST when both leaky
match and incomplete match are allowed.

ticast state and tree management overhead for multicast
schemes. We implemented different multicast schemes
in SENSE. Through extensive simulations, we compared
aggregated multicast with conventional multicast schemes
and evaluated its gain over other schemes. Our simula-
tions have shown that signi£cant state and tree manage-
ment overhead reduction (up to 75% state reduction in our
experiments) can be achieved with reasonable bandwidth
and tunnelling overhead (0.1 to 0.3), etc. Thus aggregated
multicast is a very promising scheme for transit domain
multicast provisioning.

Future Works We would like to extend our work in the
following directions:

(1) We will apply our aggregated multicast scheme to
the limited capacity scenario (In this paper, we assume the
“ample bandwidth supply” model), investigating the prob-
lems such as the fair sharing of the limited bandwidth and
the load balancing among the various aggregated trees, etc.

(2) We are now in the process of developing an actual
aggregated multicast routing protocol testbed for real ap-
plication scenarios. The testbed will allow us to better
evaluate the state reduction and control overhead.
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